期刊文献+

一类重调和方程边值问题解的奇点可去性

Removability of Singularities of Solutions of Polyharmonic Equations Boundary Value Problem
下载PDF
导出
摘要 给出了一类重调和方程边值问题解的表示式,研究了其解的奇点可去性,利用判断反常积分收敛性的方法对解的表示式作了敛散性分析,给出了该类方程在限定条件下的具体表达式,研究了相应的解的积分表达式.将函数项幂次的取值范围在实数域上分为3段,分别讨论了每种情形下相应积分式的敛散性,得出了其在不同参数范围下解的奇点可去性. Methods for discriminating convergence and divergence of an improper integral was utilized to analysis the convergence and divergence of the representation formula of solutions of polyharmonic equations boundary value problem,The concrete formula of the equation was given in certain restricted conditions,The corresponding integral expressions were studied,Furthermore,the power of functions was divided into three parts in real number field and the convergence and divergence of corresponding integral expressions were analyzed separately in each section,Based on the above discussion,the study shows that the integral expressions of solutions are convergent if the power is greater than a certain critical value and the singularity is removable,while they are divergent if the power is less than the critical value and the singularity is nonremovable.
作者 刘淼 魏公明
出处 《上海理工大学学报》 CAS 北大核心 2013年第5期443-448,共6页 Journal of University of Shanghai For Science and Technology
关键词 重调和方程 反常积分敛散性 边值问题 奇点可去性 polyharmonic equation convergence and divergence of improper integral boundary value problem singularity removability
  • 相关文献

参考文献8

  • 1Gazzola F, Grunau H C, Sweers G. Polyharmonic Boundary Value Problems[M]. Heidelberg: Springer, 2010.
  • 2Lu Guozhen, Wang Peiyong, Zhu Jiuyi. Liouville-type theorems and decay estimates for solutions to higherorder elliptic equations[J]. Ann I H Poincarfi-AN, 2012, 29(5) :653 - 665.
  • 3Soranzo R. Isolated singularities of positive solutions of a superlinear biharmonic equation [J]. Potential Analysis, 1997,6(1) :57 - 85.
  • 4Hsu S Y. Removable singularity of the polyharmonic equation [ J]. Nonlinear Analysis, 2010, 72 ( 2 ) : 624 - 627.
  • 5GherguM, Moradifam A, Taliaferro S D. Isolated singularities of polyharmonic inequalities[J]. Journal of Functional Analysis, 2011,261 (3) .. 660 - 680.
  • 6Mamedov F I, Harmana A. On the removability of isolated singular points for degenerating nonlinear elliptic equations[J]. Nonlinear Analysis, 2009,71 (12) 6290 - 6298.
  • 7褚后利,魏公明.一类超线性Dirichlet问题无穷多个径向对称解的存在性[J].上海理工大学学报,2013,35(2):121-125. 被引量:1
  • 8张仕玉,魏公明.一类半线性椭圆型方程解的可去奇点问题[J].上海理工大学学报,2013,35(1):37-40. 被引量:1

二级参考文献17

  • 1Brezis H, Veron L. Removable singularities of some nonlinear elliptic equations [J]. Archive for Rational Mechanics and Analysis, 1980(75) :1 - 6.
  • 2VazquezJ L, Veron L. Removable singularities of some strongly nonlinear elliptic equations [J]. Manscripta Math, 1980(33) : 129 - 144.
  • 3Cirstea F C, Du Y H. Asymptotic behavior of solutions of semilinear elliptic equations near an isolated singularity[J]. Journal of Functional Analysis, 2007 (250) :317 - 346.
  • 4Cirstea F C, Du Y H. Isolated singularities for weighted qua-silinear elliptic equations[J]. Journal of Functional Analysis, 2010 (259) : 174 - 202.
  • 5Mamedov F I, Harman A. On the removablity of isolated singular points for degenerating nonlinear elliptic equations [J]. Nonlinear Analysis, 2009 ( 71 ) : 6290 - 6298.
  • 6Bidaut M F, Ponce A C, Veron L. Isolated boundary singularities of semitinear elliptic equations [J]. Calculus of Variations and Partial Differential Equations,2011 (40) : 183 - 221.
  • 7Brezis H, Nirenberg L. Removable singularities for nonlinear elliptic equations[J]. Topological Methods in Nonlinear Analysis, 1997(9) : 201 - 219.
  • 8Del P M, Musso M, Pacard F. Boundary singularities for weak solutions of semilinear elliptic problems[J]. Journal of Functional Analysis, 2007 (253) : 241 - 272.
  • 9SerrinJ. Local behaviour of solutions of quasilinear equations[J]. Acta Mathematica, 1964 (111) : 247 - 302.
  • 10Fink A, Gaticaj A, Hernandez G. Approximation ofsingular second order boundary value problems [J].SIAM J Math Anal,1991,22(3) :440 - 462.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部