期刊文献+

利用网络结构熵研究复杂网络的演化规律 被引量:18

Complex Networks Evolution Research Using the Network Structure Entropy
下载PDF
导出
摘要 利用网络结构熵作为网络演化的指标来研究不同网络的演化规律。选取了3种典型的网络包括无尺度网络、随机网络和规则网络,以及构建的与实际比较接近的网络模型,另外,为了避免由于网络结构熵的定义不准确,还选择3种不同定义的网络结构熵,从而研究网络结构熵在网络演化过程中的变化趋势,最后得出不同类型的网络在网络演化过程中,网络结构熵的差别较大,同时可以利用网络结构熵的增长率作为网络演化的指标,网络演化初期,网络结构熵增长率较大,随着网络规模逐渐增大,网络结构基本稳定,网络结构熵的增长率也逐渐降低。 Different types of network evolution have different characteristics. To study the charac- teristics of the different network evolution, we try to take advantage of the network structure en- tropy as network evolution indicators. We also choose the three typical network including the scale-free network, the random network, the star network and construct a network model similar to the real social network. In addition, in order to avoid the inaccurate of the network structure entropy definition, we also choose three different definitions of the network structure entropy to study the network evolution trend. Finally we get the conclusion that the network structure en- tropy of different types of networks in the evolution process is different. We can also use the growth rate of the network structure entropy as the indicator of the network evolution. The growth rate is big in the early network evolution. As the network size increases, the network structure is more stable and the growth rate decreases.
出处 《复杂系统与复杂性科学》 EI CSCD 北大核心 2013年第4期62-68,共7页 Complex Systems and Complexity Science
基金 国家自然科学基金(71271070) 高等学校博士点专项基金(20092302110060) 教育部新世纪优秀人才支持项目(NCET-08-0171)
关键词 网络演化 网络结构熵 比较研究 复杂网络 演化规律 network evolution~ network structure entropy~ comparative study complex net-work evolution law
  • 引文网络
  • 相关文献

参考文献16

  • 1Watts DJ. Strogatz S H. Collective dynamics of "small-world" networks[J]. Nature. 1998. 393(6684): 440 - 442.
  • 2Barabdsi A L. Albert R. Emergence of scaling in random networks[J]. Science. 1999. 286(15): 509 - 512.
  • 3Mislove A. Koppula H S. Gummadi K r. et al. Growth of the flickr social network[CJ/ /Proceedings of the ACM SIGCOMM 2008 Con?ference on Computer Cornmunications-Lst Workshop on Online Social Networks. Seattle. 2008: 25 - 30.
  • 4Catanzaro M. Caldarelli G. Pietronero L. Social network growth with assortative mixing[J]. Physica A. 2004. 338(1/2): 119 -124.
  • 5Toivonen R. Kovanen L. Kivela M. et al. A comparative study of social network models: network evolution models and nodal attribute models[J]. Social Networks. 2009. 31(4): 240 - 254.
  • 6Va' zquez A. Growing network with local rules: preferential attachment. clustering hierarchy. and degree correlations[J]. Physical Re?view E. 2003. 67(52): 056104/1 - 056104/15.
  • 7余展翅,钟太勇.一种基于网络度量的网络演化的探索性方法[J].郧阳师范高等专科学校学报,2010,30(3):10-13. 被引量:1
  • 8张华,席酉民.社会资本视角下的咨询网络演化研究[J].运筹与管理,2009,18(4):138-143. 被引量:3
  • 9李永立,王崑声.系统演化都伴随着幂率分布吗?[J].复杂系统与复杂性科学,2011,8(3):74-79. 被引量:1
  • 10Anand K. Bianconi G. Entropy measures for networks: toward an information theory of complex topologies[J] . Physical Review E. 2009.80(4): 045102.

二级参考文献58

共引文献149

同被引文献204

引证文献18

二级引证文献58

;
使用帮助 返回顶部