期刊文献+

炭黑增强橡胶复合材料力学行为的三维数值模拟 被引量:1

THREE DIMENSIONAL NUMERICAL SIMULATION OF THE MECHANICAL BEHAVIOR OF CARBON BLACK FILLED RUBBER COMPOSITES
原文传递
导出
摘要 论文基于炭黑填充橡胶复合材料具有周期性细观结构的假设,采用一种新的、改进的随机序列吸附算法建立了三维多球颗粒随机分布式代表性体积单元,并通过细观力学有限元方法对炭黑颗粒填充橡胶复合材料的力学行为进行了模拟仿真.研究结果表明:采用改进的随机序列吸附算法所建立的模型更加便于有限元离散化;模拟中周期性边界条件的约束,使其更加符合实际约束的真实情况;炭黑填充橡胶复合材料的有效模量明显高于未填充橡胶材料,并随着炭黑颗粒所占体积分数的增加而增大;通过比较发现,论文提出的多球颗粒随机分布式三维数值模型对复合材料的应力-应变行为和有效弹性模量的预测结果与实验结果吻合良好,证实了该模型能够用于炭黑颗粒增强橡胶基复合材料有效性能的模拟分析. Based on the hypothesis of periodically well-distributed microstructure of carbon black filled rubber composites, three-dimensional representative volume elements (RVE) with multi-sphere particles randomly distributed have been generated using a new modified Random Sequential Adsorption algorithm, and the macroscopic mechanical properties of the carbon black filled rubber composites have been studied and analyzed by the microscopic finite element method. The results show that the models generated by the modified Random Sequential Adsorption algorithm are more suitable for finite element discretization and the simulations can describe the reality better by the periodic boundary conditions. It's also shown that the modulus of the rubber composite is increased considerably with the introduction of carbon black filler parti- cles, and the effective elastic modulus of the rubber composite is increased with the increase of the particle volume fraction. By comparison, it is shown that the results predicted by the present method are consistent well with the experimental results, demonstrating that this model can be used for simulation analysis of ef-fective properties of the carbon black filler particle reinforced rubber matrix composites.
作者 李庆 杨晓翔
出处 《固体力学学报》 CAS CSCD 北大核心 2013年第6期541-549,共9页 Chinese Journal of Solid Mechanics
基金 国家自然科学基金项目(11372074)资助
关键词 橡胶复合材料 炭黑颗粒 随机序列吸附算法 代表体积单元 周期性边界条件 rubber composites, carbon black filler particle, random sequential adsorption algorithm,representative volume element, periodic boundary conditions.
  • 相关文献

参考文献15

  • 1Segurado J,Llorca J. A numerical approximation tothe elastic properties of sphere-reinforced composites[J]. Journal of the Mechanics and Physics of Solids,2002,50:2107-2121.
  • 2Segurado J,Gonzalez C,Llorca J. A numerical investi-gation of the effect of particle clustering on the me-chanical properties of composites[J]. Acta Materialia.2003,51:2355-2369.
  • 3Llorca J,Segurado J. Three-dimensional multiparticlecell simulations of deformation and damage in sphere-reinforced composites[J]. Materials Science and Engi-neering ,2004,A365 : 267-274.
  • 4Gonzalez C,Segurado J,Llorca J. Numerical simula-tion of elastic-plastic deformation of composites : evo-lution of stress microfields and implications for hom-ogenization models[J]. Journal of the Mechanics andPhysics of Solids, 2004,52 : 1573-1593.
  • 5Bergstrom J S,Boyce M C. Mechanical behavior ofparticle filled elastomers [J]. Rubber Chemistry andTechnology, 1999 ,72: 633-656.
  • 6Li Q, Yang X X. Numerical simulation for mechanicalbehavior of carbon black filler particle reinforced rub-ber matrix composites[Cj//Zhu R. Applied Mechan-ics and Civil Engineering. Macao;Trans Tech Publica-tions,2012,137 :1-6.
  • 7Govindjee S. An evaluation of strain amplification con-cepts via Monte Carlo simulations of an ideal composite[J]. Rubber Chemistry and Technology ,1997,70 : 25-37.
  • 8Li Q, Yang X X. Numerical simulation for mechanicalbehavior of carbon black filled rubber compositesbased on plane stress model[C]//Chen W Z? Li Q,Chen Y L,Dai P Q, Jiang Z Y. Advanced MaterialsResearch. Xiamen: Trans Tech Publications,2012,476-478:2543-2547.
  • 9李庆,杨晓翔.颗粒增强橡胶细观力学性能二维数值模拟[J].应用力学学报,2012,29(5):607-612. 被引量:7
  • 10Gitman I M, Askes H, Sluys L J. Representative vol-ume: Existence and size determination[J]. EngineeringFracture Mechanics,2007 ,74 : 2518-2534.

二级参考文献13

  • 1Bergstrom J S, Boyce M C. Mechanical behavior of particle filled elastomers[J]. Rubber Chemistry and Technology, 1999, 72.- 633-656.
  • 2Govindjee S, Simo J C. A micro-mechanically based continuum damage model for carbon black-filled rubbers incorporating Mullin's effect[J]. Journal of the Mechanics and Physics of Solids, 1991, 39: 87-112.
  • 3Meinecke E A, TaRafM I. Effect of carbon black on the mechanical properties of elastomers[J]. Rubber Chemistry and Technology, 1988, 61: 534-547.
  • 4Boyce M C, Arruda E M. Constitutive models of rubber elasticity: a review[J]. Rubber Chemistry and Technology, 2000, 73(3): 504-552.
  • 5Rivlin R S. Large elastic deformation of isotropic materials: I Fundamental concepts, II Some uniqueness theorems for pure homogeneous deformation[J]. Philosophical Transactions of the Royal Societyof London: SeriesA, 1948, 240: 459-508.
  • 6Gent A N. Engineering with rubber: how to design rubber components[M]. Lubeck. Hanser Gardner Publications, 2001.
  • 7Gilman lM, AskesH, Sluys L J. Representative volume: existence and size determination[J]. Engineedng Fracture Mechanics, 2007, 74: 2518-2534.
  • 8Smit R J M, Brekelmans W A M, Meijer H E H. Prediction of themechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling[J]. Computer Methods in Applied Mechanics andEngineering, 1998, 155: 181-192.
  • 9Segurado J, Llorca J. A numerical approximation to the elastic properties of sphere-reinforced composites[J]. Journal of the Mechanics andPhysics of Solids, 2002, 50: 2107-2121.
  • 10Hassani B, Hinton E. A review of homogenization and topology optimization H----analytical and numerical solution of homogenization equations[J]. Computers andStructures, 1998, 69: 719-738.

共引文献6

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部