期刊文献+

On variance of exponents for isolated surface singularities with modality ≤ 2 In Memory of Professor Philip Wagreich

On variance of exponents for isolated surface singularities with modality ≤ 2 In Memory of Professor Philip Wagreich
原文传递
导出
摘要 Using the theory of the mixed Hodge structure one can define a notion of exponents of a singularity.In 2000,Hertling proposed a conjecture about the variance of the exponents of a singularity.Here,we prove that the Hertling conjecture is true for isolated surface singularities with modality ≤ 2. Using the theory of the mixed Hodge structure one can define a notion of exponents of a singularity.In 2000,Hertling proposed a conjecture about the variance of the exponents of a singularity.Here,we prove that the Hertling conjecture is true for isolated surface singularities with modality ≤ 2.
出处 《Science China Mathematics》 SCIE 2014年第1期31-41,共11页 中国科学:数学(英文版)
基金 supported by Start-up Fund of Tsinghua University
关键词 SINGULARITIES MODALITY EXPONENTS singularities,modality,exponents
  • 相关文献

参考文献22

  • 1Arnold V I. Normal forms of functions near degenerate critical points, the Weyl group Ak,Dk,Ek and Lagrange singularities. Funct Anal Appl, 1972, 6:254-274.
  • 2Arnold V I. Some remarks on the stationary phase method and Coxeter numbers. Uspehi Mat Nauk, 1973, 28: 1744; Russian Math Surveys, 1973, 28:19-48.
  • 3Brelivet T. Variance of spectral numbers and Newton polygons. Bull Sci Math, 2002, 126:333-342.
  • 4Brelivet T. The Hertling conjecture in dimension 2. ArXiv:math.AG/0405489.
  • 5Deligne P, Thorie de Hodge I. Actes Congrs. Intern Math, 1970:425 -430; II. Publ Math IHES, 1971, 40: 5-58; III. ibid, 1974, 44:5-77.
  • 6Dimca A. Monodromy and Hodge theory of regular functions. In: New Developments in Singularity Theory. Berlin: Springer, 2001, 257-278.
  • 7Hertling C. FYobenius manifolds and variance of the spectral numbers. In: New Developments in Singularity Theory. Berlin: Springer, 2001, 235 -255.
  • 8Coryunov V V. Adjacencies of spectra of certain singularities. Vestnik MGU Ser Math, 1981, 4:19- 22.
  • 9Mather J N. Finitely determined map germs. Inst Hautes Tudes Sci Pub Math, 1968, 35:279-308.
  • 10Mather J N. Stability of Co mappings, I: The division theorem. Ann Math, 1968, 87:89-104.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部