摘要
文章研究了常系数线性分数阶微分方程的求解问题,利用Mittag-Leffler函数及其Laplace变换,提出了某些类别的常系数线性分数阶微分方程的求解问题,且得到了一些解线性分数阶微分方程的方法.
It is important to study idempotent transformation of range and kernel of linear transformation in the diagonalization of matrices. From the range and kernel of linear transformation direct sum decomposition for finite dimension of linear space, the following conclusion can be obtained: Let cr be an idempotent transformation and be an arbitrary linear transformation, then the sufficient and necessary conditions in which σ of the range and ker- nel of linear transformation is an invariant subspace are given ; Let cr be an idempotent transformation and τ = ε - σ also be an idempotent transformation, the relationship between A and B are given in the range and kernel of lin- ear transformation; Finally, we extend the sufficient and necessary conditions of two idempotent transformation to k - idempotent transformation are equal in range and kernel of linear transformation.
出处
《绵阳师范学院学报》
2013年第11期18-20,共3页
Journal of Mianyang Teachers' College
基金
新疆普通高校重点培育学科基金资助项目(XJZDXK2011004)