期刊文献+

常系数线性分数阶微分方程组的解

Solution to Linear Fractional Differential Equation with Constant Coefficients
下载PDF
导出
摘要 文章研究了常系数线性分数阶微分方程的求解问题,利用Mittag-Leffler函数及其Laplace变换,提出了某些类别的常系数线性分数阶微分方程的求解问题,且得到了一些解线性分数阶微分方程的方法. It is important to study idempotent transformation of range and kernel of linear transformation in the diagonalization of matrices. From the range and kernel of linear transformation direct sum decomposition for finite dimension of linear space, the following conclusion can be obtained: Let cr be an idempotent transformation and be an arbitrary linear transformation, then the sufficient and necessary conditions in which σ of the range and ker- nel of linear transformation is an invariant subspace are given ; Let cr be an idempotent transformation and τ = ε - σ also be an idempotent transformation, the relationship between A and B are given in the range and kernel of lin- ear transformation; Finally, we extend the sufficient and necessary conditions of two idempotent transformation to k - idempotent transformation are equal in range and kernel of linear transformation.
出处 《绵阳师范学院学报》 2013年第11期18-20,共3页 Journal of Mianyang Teachers' College
基金 新疆普通高校重点培育学科基金资助项目(XJZDXK2011004)
关键词 线性 分数阶 Mittag—Leffler函数 LAPLACE变换 idempotent transformation range of linear transformation kernel linear space
  • 相关文献

参考文献6

二级参考文献18

  • 1王培光,葛渭高.ON THE OSCILLATION OF SOLUTIONS OF HYPERBOLIC PARTIAL FUNCTIONAL DIFFERENTIAL EQUATIONS[J].Applied Mathematics and Mechanics(English Edition),1999,20(7):47-55. 被引量:12
  • 2孙云 刘承世.分数阶微积分与分数阶微分方程[J].工科数学,1994,10(4):55-57.
  • 3杨光俊,1995年昆明国际半群会方报告,1995年
  • 4杨光俊,欧拉-泊松-达布方程,1989年
  • 5Lin Ran,Liu Fawang. Analysis of Fractional-order numerical method for the fractional Relaxation equation[A].Computational Mechanics[M/CD]. Beijing:Tsinghua University & Springer-Verlag,2004.
  • 6Kai Diethelm, Neville J Ford, Alen D Freed. Detailed error analysis for a fractional Adams method[J]. Numerical Algorithms,2004,36(1) :31-52.
  • 7Eric W Weisstein. Fractional Differential Equations[M].San Diego: Academic Press, 1999.
  • 8Diethelm K, Ford N J. Numerical solution of Bagley-Torvik equation[J]. BIT,2004, 42:490-507.
  • 9Rektory K. Handbook of Applied Mathemathtics[M].Vols. 1, Ⅱ. Prague: SNTL, 1988 (in Czech).
  • 10Diethelm K. An algorithm for the numerical solution of differential equations of fractional order[J]. Elec. Transact. Numer. Anal. , 1997,5:1-6.

共引文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部