期刊文献+

基于局部近邻相关性的多标记算法 被引量:4

Multiple Label Approach Based on Local Correlation of Neighbors
下载PDF
导出
摘要 通过近邻样例类标记确定测试样例类标记的思想在多标记分类算法中取得了良好的效果。该类算法通过对训练集进行学习,建立训练样例类标记与其k个近邻样例中不同类标记样例个数的映射关系,然后用该映射关系预测测试样例的类标记。该类算法的不足是只考虑近邻样例中不同类别样例的个数与测试样例类标记的映射关系,忽略了近邻样例与测试样例的局部相关性。考虑训练样例类与近邻样例的局部相关性,建立起它们类别间的映射关系,预测测试样例类标记,提出ML-WKNN算法。实验表明,ML-WKNN能更好地处理多标记分类问题和自动图像标注问题。 Determining the classification of the test sample by using neighbors' labels achieves good results in multiple label classification. The mapping relationships of these algorithms are established between the labels of training exam- ples and the number of different samples in their k-nearest neighbors by learning from the training set. The label of a test sample can be easily predicted by applying the mapping relationship. The disadvantage of these algorithms is to con- sider only the mapping relationship between the labels of the test examples and the number of different samples in their k-nearest neighbors, and to ignore the local correlation between the labels of the test examples and their k-nearest neigh- bors. This paper proposed an algorithm called ML-WKNN algorithm, which classifies the test examples through the mapping relationship between the labels of the training examples and their k-nearest neighbors by considering the local correlation between the labels of the training examples and their k-nearest neighbors. The experimental results show that the ML-WKNN algorithm achieves better results than other algorithms in dealing with the multi-label classification problems and automatic image annotation.
出处 《计算机科学》 CSCD 北大核心 2014年第2期123-126,共4页 Computer Science
基金 国家自然科学基金(61170145) 教育部高等学校博士点专项基金(20113704110001) 山东省自然科学基金 山东省科技攻关计划项目(ZR2010FM021 2010G0020115)资助
关键词 多标记学习 K近邻 分类 局部相关 Multi-label learning, KNN, Classification, Local correlation
  • 相关文献

参考文献13

  • 1McCallum Andrew. Multi-label text classification with a mixture model trained by EM[A].1999.1-7.
  • 2Schapire,Robert E,Singer Y. BoosTexter:A boosting-based system for text categorization[J].{H}Machine Learning,2000,(2/3):135-168.
  • 3Tsoumakas,Grigorios,Katakis I. Multi-label classification:An overview[J].International Journal of Data Warehousing and Mining (IJDWM),2007,(3):1-13.
  • 4Elisseeff,André,Weston J. A kernel method for multi-labelled classification[J].Advances in neural information processing systems,2001.681-687.
  • 5Zhang Min-ling,Zhou Zhi-hua. ML-KNN:A lazy learning approach to multi-label learning[J].{H}Pattern Recognition,2007,(7):2038-2048.
  • 6苗夺谦;卫志华.中文文本信息处理的原理与应用[M]{H}北京:清华大学出版社,2007219-228.
  • 7Clare,Amanda,Ding K R. Knowledge discovery in multi-label phenotype data[A].2001.42-53.
  • 8Comité D,Francesco,Gilleron R. Learning multi-label alternating decision trees from texts and data[A].2003.35-49.
  • 9Boutell,Matthew,Luo Jie-bo. Learning multi-label scene classification[J].{H}Pattern Recognition,2004,(9):1757-1771.
  • 10Zhang Min-ling,Zhou Zhi-hua. Multilabel neural networks with applications to functional genomics and text categorization[J].{H}IEEE Transactions on Knowledge and Data Engineering,2006,(10):1338-1351.

同被引文献24

  • 1McCllum Andrew. Multi -label text classification with a mixture model trained by EM [ C ]. AAAI' 99 Workshop on Text Learning, 1999:1 -7.
  • 2Wang M,Ni B, Hua X S, et al. Assistive tagging:A survey of multimedia tagging with human -computer joint exploration [ Jl. ACM Computing Surveys, 2012,44(4) :25.
  • 3Kim H J, Choi Y H. A novel echo hiding scheme with backward and forward kernels[ J]. IEEE Trans Circuits Syst, Video Teehno1,2003 ,13 :885 -889.
  • 4Le Cun Y, Bottou L, Bengio Y, et al. Gradient -based learning applied to document recognition [ J]. Proceedings of the IEEE, 1998,86 (11 ) : 2278 - 2324.
  • 5Socher R, Lin C C, Manning C,et ah Parsing natural scenes and natural language with recursive neural network [ C ]. Proceedings of the 28th International Conference on Machine Learning. Washington, USA : ICML,2011 : 129 - 136.
  • 6Wang W, Ooi B C, Zhang D. Effective multi - modal retrieval based on stacked auto - encoders [ C ]. Proceedings of International Conference on Very Large Data Bases. Hangzhou, China: VLDB, 2014:649 - 660.
  • 7胡清华,赵辉,于达仁.基于邻域粗糙集的符号与数值属性快速约简算法[J].模式识别与人工智能,2008,21(6):732-738. 被引量:82
  • 8张振海,李士宁,李志刚,陈昊.一类基于信息熵的多标签特征选择算法[J].计算机研究与发展,2013,50(6):1177-1184. 被引量:62
  • 9田枫,沈旭昆.基于标签集相关性学习的大规模网络图像在线标注[J].自动化学报,2014,40(8):1635-1643. 被引量:6
  • 10何志芬,杨明,刘会东.多标记分类和标记相关性的联合学习[J].软件学报,2014,25(9):1967-1981. 被引量:21

引证文献4

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部