期刊文献+

累积两点信息的有理逼近RALND的改进

AN IMPROVEMENT FOR THE RATIONAL APPROXIMATION RALND AT ACCUMULATED TWO-POINT INFORMATION
原文传递
导出
摘要 文献[1l提出了分子分母皆为线性函数的多元有理逼近(Rational Approximation with Linear Numerator and Denominator,RALND),满意地求了非线性方程组的解和数学规划最优解,为了克服RALND的不足,使之更好地发挥作用,本文试图改进该逼近:(1)提出了更合理地筛选有理逼近解的方法;(2)证明了该逼近的单调性;(3)对于原函数在当前点与前次迭代点连线方向上方向导数符号相反的情况,分别提出了迭代求有理逼近和构造在当前点与估算点连线方向上相应的方向导数符号相同的近似有理逼近的方法;(4)提出了一个非单调的有理逼近函数;(5)通过数值计算验证了本文提出的有理逼近是有效和可行的. A rational approximation with linear numerator and denominator (RALND) in ref- erences [1] was proposed to be applied in solving nonlinear equations and mathematical programming satisfactorily. This paper attempts to improve the approximation in order to overcome RALND's lack to play its role preferably: (1) A method of selecting the more prop- er solution of rational approximations is presented. (2) The rational approximation is proven to be a monotonic function. (3) For having opposite signs of two directional derivatives a- long the direction connecting the current iterative point and the previous iterative point of an original function, we propose an iterative method of solving its rational approximation and an approximate method to construct a rational function with same signs corresponding directional derivatives along the direction connecting the current iterative point and another estimate point, respectively. (4) A non-monotonic rational approximation function is pre- sented. (5) Numerical experimental results show the validity and feasibility of the rational approximation of this paper.
出处 《计算数学》 CSCD 北大核心 2014年第1期51-64,共14页 Mathematica Numerica Sinica
基金 国家自然科学基金(11172013和11261037)资助项目
关键词 有理逼近 累积两点信息 模型化 迭代求解 Rational Approximation Accumulated Two-point Information Modeling Iterative Solution
  • 相关文献

参考文献15

  • 1隋允康,叶宝瑞.一种方便实用的有理逼近及其对于大量优化方法的改进[J].运筹学杂志,1993,12(1):52-66. 被引量:4
  • 2Hestenes M R, Stiefel E. Methods of conjugate gradients for solving linear systems [J]. Journal of Research of the National Bureau of Standards, 1952, 49(6): 409-436.
  • 3Fletcher R, Reeves C M. Function minimization by conjugate gradients [J]. The computer journal, 1964, 7(2): 149-154.
  • 4戴虹 袁亚湘.非线性共轭梯度法[M].上海:上海科学技术出版社,2000..
  • 5Barzilai J, Borwein J M. Two-point step size gradient methods [J]. IMA Journal of Numerical Analysis, 1988, 8(1): 141-148.
  • 6Dai Y H, Liao L Z. R-linear convergence of the Barzilai and Borwein gradient method [J]. IMA Journal of Numerical Analysis, 2002, 22(1): 1-10.
  • 7Farid M, Leong W J, Hassan M A. A new two-step gradient method for large-scale unconstrained optimization[J]. Computers and Mathematics with Applications, 2010, 22(9): 3301-3307.
  • 8Miele A, Cantrell J. Study on a memory gradient method for the minimization of functions[J]. Journal of Optimization Theory and Applications, 1969, 3(6): 459-470.
  • 9Cragg E, Levy A. Study on a supermemory gradient method for the minimization of functions[J]. Journal of Optimization Theory and Applications, 1969, 4(3): 191-205.
  • 10Wolfe M, Viazminsky C. Supermemory descent methods for unconstrained minimization[J]. Jour- nal of Optimization Theory and Applications, 1976, 18(4): 455-468.

二级参考文献10

  • 1隋允康.非线性方程和一维搜索的反函数解法[J].大连理工大学学报,1993,33(2):125-129. 被引量:5
  • 2隋允康,叶宝瑞.一种方便实用的有理逼近及其对于大量优化方法的改进[J].运筹学杂志,1993,12(1):52-66. 被引量:4
  • 3隋允康,工程数学学报,1985年,2卷,1期,173页
  • 4隋允康,计算结构力学及其应用,1985年,2卷,1期,39页
  • 5钱令希,工程结构优化设计,1983年
  • 6隋允康,工程数学学报,1990年,7卷,4期,9页
  • 7隋允康,Approximation,optimization and computing:theory and applications,1990年
  • 8隋允康,计算结构力学及其应用,1988年,5卷,4期,76页
  • 9隋允康,应用力学学报,1987年,4卷,2期,87页
  • 10隋允康,上海力学,1986年,7卷,1期,11页

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部