摘要
The fatigue life prediction of high strength steel SUS 630 (H900) under high cycle loading is conducted with consideration of a characteristic fatigue length of material. Based on the WShler curve of smooth materials, a modified method for fatigue life prediction is approached. The characteristic fatigue length of material under cyclic loading is associated with the polycrystalline material. Rather than the stress at a point, the average stress within the characteristic fatigue length is implemented for the fatigue life prediction. The method can be applied to both the smooth and the defected material. The fatigue life prediction is also verified experimentally by specimens with various small circular holes. Through the comparison, it is found that the method can be adopted to predict the fatigue lives with different size effects.
The fatigue life prediction of high strength steel SUS 630 (H900) under high cycle loading is conducted with consideration of a characteristic fatigue length of material. Based on the WShler curve of smooth materials, a modified method for fatigue life prediction is approached. The characteristic fatigue length of material under cyclic loading is associated with the polycrystalline material. Rather than the stress at a point, the average stress within the characteristic fatigue length is implemented for the fatigue life prediction. The method can be applied to both the smooth and the defected material. The fatigue life prediction is also verified experimentally by specimens with various small circular holes. Through the comparison, it is found that the method can be adopted to predict the fatigue lives with different size effects.
基金
supported by the National Natural Science Foundation of China(Nos.10772116,10772115 and 10932007)
by the JST program ‘Development of Technology for Promoting Food Quality Project’