摘要
振动载荷作用下耕作土壤作用力复杂多变,为研究入土角、振幅、振频对土壤作用力、牵引阻力的影响,将耕作土壤视为粘弹性材料,根据深松铲对土壤进行切削、提升、再切削,建立考虑分段土壤作用力的振动深松机-土壤系统的力学模型,采用渐近法与数值积分求解分析该模型,分析表明入土角为45°、振幅为0.001 m、振频为10 Hz时,土壤作用力较小。利用振动深松机进行试验研究,试验数据与仿真数据对比,验证了模型的正确性。试验结果进一步表明利用振动可以减小土壤作用力,降低拖拉机牵引阻力,提高土壤深松质量。
Acting force of soil is a complicated variable under vibrating working condition. In order to study the effect of penetration angle, amplitude and vibration frequency on acting force of soil and traction resistance, the soil was taken as viscoelastic material. The mechanics model for vibratory subsoiler and soil system was established considering pieeewise acting force of soil. It adopted asymptotic method and numerical integral to solve and analyze this model, and the results showed that when the penetration angle was 45~, the amplitude was 0. 001 m and the vibration frequency was 10 Hz, acting force of soil was relatively small. A vibratory subsoiler was tested in site to verify the correctness of the model through comparison of the simulation data and experimental data. The analysis further shows that the vibration can be used to reduce acting force of soil and traction resistance of tractor and improve quality of soil subsoiling.
出处
《农业机械学报》
EI
CAS
CSCD
北大核心
2014年第2期136-140,共5页
Transactions of the Chinese Society for Agricultural Machinery
基金
国家自然科学基金资助项目(51105259
51175354)
关键词
振动
耕作
土壤作用力
牵引阻力
Vibration Tillage Acting force of soil Traction resistance