期刊文献+

基于改进协方差特征的李-KNN分类算法 被引量:8

Improved Covariance Feature Based Lie-KNN Classification Algorithm
下载PDF
导出
摘要 K最近邻(KNN)分类简单高效,广泛应用于分类问题或作为分类问题中的比较基准.但实际应用中的数据,特别是结构复杂的高维数据,其特征可能不属于欧氏空间.如何选择样本特征及计算样本点间距离是KNN中的一个难题,文中充分考虑各种影响因素,基于图像区域协方差特征,利用集成的方式,提出一种多协方差李-KNN分类算法.该算法充分利用KNN分类的简单有效性及李群结构的复杂数据表示和距离计算能力,有效解决复杂高维数据的分类问题.手写体数字实验验证该算法具有较好的效果. K-nearest neighbor ( KNN ) classification is simple, efficient and widely used for classification problems or as a base of comparison. However, the data, especially those with complex high-dimensional structures, do not always belong to the Euclidean space in practical application. How to select the features of samples and calculate the distances between them is a hard problem in KNN. With full consideration of various factors, a multi-covariance Lie-KNN classification method is put forward based on the image region covariance. In this method, the simplicity and the validity of KNN and the abilities of Lie group structure to represent complex data and calculate distances are fully used. It effectively solves the classification problems of complex high-dimensional data. Experimental results on handwritten numerals verify its effectiveness.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2014年第2期173-178,共6页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金资助项目(No.61033013)
关键词 多协方差 测地线 李代数 李-K近邻 Multi-Covariance Geodesic Lie-Algebra Lie-K Nearest Neighbor
  • 相关文献

参考文献20

  • 1Rosenfeld A, Vanderburg G. Coarse-Fine Template Matching. IEEE Trans on Systems, Man and Cybernetics, 1977, 7(2) : 104-107.
  • 2runelli R, Poggio T. Face Recognition: Features versus Templates. IEEE Trans on Pattern Analysis and Machine Intelligence, 1993, 15 ( 10) : 1042-1052.
  • 3Maree R, Geurts P, Piater J, et at. Random Subwindows for Robust Image Classification / / Proc of the IEEE Conference on Computer Vision and Pattern Recognition. San Diego, USA, 2005, 1: 34-40.
  • 4orikli F. Integral Histogram: A Fast Way to Extract Histograms in Cartesian Spaces / / Proc of the IEEE Conference on Computer Vision and Pattern Recognition. San Diego, USA, 2005, I: 829-836.
  • 5iola P, Jones M. Rapid Object Detection Using a Boosted Cascade of Simple Features / / Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Kauai, USA, 2001, 1: 511-518.
  • 6Tuze! 0, Porikli F, Meer P. Region Covariance: A Fast Descriptor for Detection and Classification / / Proc of the 9th European Conference on Computer Vision. Graz, Austria, 2006: 589-600.
  • 7Weinberger K Q, Blitzer J, Saul L K. Distance Metric Leaming for Large Margin Nearest Neighbor Classification [EB/OL]. [2013- 03- 03 J. http://machine!eaming. wustl. edulmlpaperslpaper_ files/NIPS2005 _265. pdf.
  • 8Goldberger J, Roweis S, Hinton G, et at. Neighbourhood Components Analysis / / Saul L, Weiss Y, Bottou L, eds. Advances in Neural Information Processing Systems. Cambridge, USA: MIT Press, 2005, 17: 513-520.
  • 9Chopra S, Hadsell R, LeCun Y. Learning a Similarity Metric Discriminatively, with Application to Face Verification / / Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, USA, 2005, I: 539-546.
  • 10Xing E P, Ng A Y, Jordan M I, et at. Distance Metric Learning with Application to Clustering with Side-Information [EB/OL] . [2013 -04 -15]. http://books.nips.cc/papers/fileslnipsI5/ AA03. pdf.

二级参考文献18

  • 1Tuzel O, Porikli F, Meer P. Learning on Lie Groups for Invariant Detection and Tracking// Proc of the IEEE Computer Society Con- ference on Computer Vision and Pattern Recognition. Anchorage, USA, 2008 : 1-8.
  • 2Bayro-Corrochano E, Ortegon-Aguilar J. Lie Algebra Template Tracking//Proe of the 17th International Conference on Computer Vision and Pattern Recognition. Cambridge, UK, 2004, 11 : 56- 59.
  • 3Miao X, Rao R P. Learning the Lie Groups of Visual Invariance. Neural Computation, 2007, 19 (10) : 2665-2693.
  • 4Lin Dahua, Crimson E, Fisher J. Learning Visual Flows: A Lie Algebraic Approach// Proc of the IEEE Computer Society Confer- ence on Computer Vision and Pattern Recognition. Miami Beach, USA, 2009 : 747-754.
  • 5Tuzel O, l:orikli F, Meer P. Region Covariance : A Fast Descriptor for Detection and Classification//Proc of the 9th European Confer- ence on Computer Vision. Graz, Austria, 2006 : 589-600.
  • 6Tuzel O, Porikli F, Meer P. Human Detection via Classification on Riemannian Manifolds// Proc of the IEEE Computer Society Con- ference on Computer Vision and Pattern Recognition. Minneapolis, USA, 2007 : 1-8.
  • 7Fletcher T, Lu C, Joshi S. Statistics of Shape via Principal Geodesic Analysis on Lie Groups// Proe of the IEEE Computer Society Con- ference on Computer Vision and Pattern Recognition. Madison, USA, 2003, I: 95-101.
  • 8Styner M, Gerig G. Medial Models Incorporating Object Variability for 3D Shape Analysis// Proe of the 17th International Conference on Information Processing in Medical Imaging. Kloster Irsee, Ger- many, 2001 : 502-516.
  • 9Yarlagadda P, Ozcanli O, Mundy J. Lie Group Distance Based Ge- neric 3-d Vehicle Classification//Proc of the IEEE Computer So- ciety Conference on Computer Vision and Pattern Recognition. An- chorage, USA, 2008 : 1-4.
  • 10Hartigan J A, Wong M A. A K-Means Clustering Algorithm. Jour- nal of the Royal Statistical Society, Series C: Applied Statistics, 1979, 28(1) : 100-108.

共引文献5

同被引文献69

引证文献8

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部