期刊文献+

硼磷掺杂小直径单壁碳纳米管的第一性原理研究 被引量:3

First-principles study on the boron-phosphorus doping small diameter carbon nanotubes
下载PDF
导出
摘要 利用基于密度泛函理论的第一性原理计算方法,研究了小直径锯齿形单壁碳纳米管(3,0)的硼(B)、磷(P)单个原子掺杂和B/P共掺杂效应.计算了B、P单原子掺杂的形成能、能带结构和电子态密度,分析得出B、P掺杂(3,0)单壁碳纳米管是可行的,并且碳纳米管的导电性没有发生明显改变.本文还计算了在不同掺杂位点,(3,0)金属性碳纳米管的形成能和能带结构,发现B/P共掺杂也是可行的,B和P趋于形成B/P对,并且B/P的掺入使(3,0)金属性碳纳米管的能带打开,由金属性变成半导体性. By using the first-principles methods base.d on density function theory(DFT), the effects of boron(B), phosphorus(P) single atom doping and B/P pair co-doping on zigzag single-walled carbon nanotubes(SWCNT) have been investigated. We calculated the formation energies, band structures and density of states(DOS) for the(3, 0) metallic SWCNT with single atom doping. According to the results, it is feasible to substitute a carbon atom with a B atom or a P atom in SWCNT and it is also found that the electroconductivity of(3, 0) SWCNT is not obviously changed. We also calculated the formation energies and band structures for the(3, 0) SWCNT with different B/P co-doping sites. The results of formation energies suggest that the B/P co-doping configurations are energetically stable structures and B/P tends to form a B-P bond. It shows that an energy gap is opened by B/P co-doping in(3, 0) metallic SWCNT and the metallic carbon nanotubes changed into the semiconductors.
出处 《原子与分子物理学报》 CAS CSCD 北大核心 2014年第1期117-121,共5页 Journal of Atomic and Molecular Physics
基金 国家自然科学基金(51072061)
关键词 单壁碳纳米管 掺杂 第一性原理 形成能 能带 Single-walled carbon nanotubes Doping First-principles Formation energy Energy band
  • 相关文献

参考文献2

二级参考文献44

  • 1Novoselov K S,Geim A K,Morozov S V,et al.Electric field effect in atomically thin carbon films[J].Science,2004,306:666.
  • 2Berger C,Song Z M,Li X B,et al.Electronic confinement and coherence in patterned epitaxial graphene[J].Science,2006,312:1191.
  • 3Tung V C,Chen L M,M J Allen,et al.Low-Temperature solution processing of graphene-carbon nanotube hybrid materials for high-performance transparent conductors[J].Nano.Letters,2009,9(5):1949.
  • 4Bai J W,Duan X F,Huang Y.Rational fabrication of graphene nanoribbons using a nanowire etch mask[J].Nano.Letters,2009,9(5):2083.
  • 5Wang F,Zhang Y B,Tian C S,et al.Gate-variable optical transitions in graphene[J].Science,2008,320:206.
  • 6Park J,Ahn Y H,Ruiz-Vargas C.Imaging of photocurrent generation and collection in single-layer graphene[J].Nano.Letters,2009,9(5):1742.
  • 7Ohta T,Bostwick A,Seyller T,et al.Controlling the electronic structure of bilayer graphene[J].Science,2006,313:951.
  • 8Nilsson J,Castro Neto A H,Guinea F,et al.Electronic properties of bilayer and multilayer graphene[J].Phys.Rev.B,2008,78(04):5405.
  • 9Boukhvalov D W,Katsnelson M I.Tuning the gap in bilayer graphene using chemical functionalization:density functional calculations[J].Phys.Rev.B,2008,78(08):5413.
  • 10Mao Y L,Zhong J X.Structural,electronic and magnetic properties of manganese doping in the upper layer of bilayer graphene[J].Nanotechnology,2008,19:205708.

共引文献7

同被引文献8

引证文献3

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部