期刊文献+

基于数据挖掘技术的表面增强拉曼光谱诊断肺癌的研究 被引量:2

Study of surface enhanced Raman spectroscopy based on data mining in the diagnosis of lung cancer
下载PDF
导出
摘要 目的探讨唾液表面增强拉曼光谱诊断肺癌的可行性,并应用数据挖掘技术得出判别肺癌的较优模型。方法利用便携式表面增强拉曼光谱检测系统对18个健康人和59个肺癌患者的唾液样本进行光谱检测和分析,用数据挖掘技术建立SVM、随机森林模型,与传统的Fisher判别模型进行比较,探讨各个模型对肺癌辅助诊断的性能。结果SVM和随机森林模型的各项诊断指标都高于Fisher判别分析,二者是判别肺癌的较优分类模型。结论研究结果表明,基于数据挖掘技术的唾液表面增强拉曼光谱分析方法可能成为一种新型的肺癌诊断工具。 Objective To investigate the potential feasibility of lung cancer diagnosis with saliva surface-enhanced Raman spectroscopy, and to obtain the relatively optimal diagnosis model of lung cancer by data mining. Methods In this paper, saliva samples of 18 healthy individuals and 59 lung cancer patients were measured and analyzed the spectra by portable SERS detection system. We established the support vector machine (SVM) and random forests by data mining technology, compared with traditional Fisher discriminant model, and then discussed the auxiliary diagnosis efficiency for lung cancer with the models. Results The diagnosis indexes of the SVM and random forest were higher than Fisher discriminant analysis. We considered SVM and random forest were the optimal classification models for the diagnosis of lung cancer. Conclusions The results showed that the study of surface enhanced Raman spectroscopy based on data mining might be a new type tool for the diagnosis of lung cancer.
出处 《北京生物医学工程》 2014年第1期35-40,共6页 Beijing Biomedical Engineering
基金 国家自然科学基金(81101641)资助
关键词 拉曼光谱 唾液 肺癌 数据挖掘 Raman spectroscopy saliva lung cancer data mining
  • 相关文献

参考文献7

二级参考文献36

共引文献53

同被引文献55

  • 1周晓农,姜庆五,孙乐平,汪天平,洪青标,赵根明,闻礼永,尹治成,吴晓华,林丹丹.我国血吸虫病防治与监测[J].中国血吸虫病防治杂志,2005,17(3):161-165. 被引量:80
  • 2张晓东.数据挖掘技术在肺癌生存期预测中的应用探讨[J].中国医院统计,2006,13(4):324-328. 被引量:6
  • 3Spear RC, Seto EY, Carlton EJ, et al. The challenge of effective surveillance in moving from low transmission to elimination of schistosomiasis in China [J]. Int J Parasitol, 2011, 41(12): 1243-1247.
  • 4Thomson MC, Doblas-Reyes FJ, Mason SJ, et al. Malaria early warnings based on seasonal climate forecasts from multi-model ensembles[J]. Nature, 2006, 439(7076): 576-579.
  • 5Yang GJ, Liu L, Zhu HR, et al. China's sustained drive to eliminate neglected tropical diseases [J]. Lancet Infect Dis, 2014, 14(9): 881-892.
  • 6Bergquist R Yang GJ, Knopp S, et al. Surveillance and response: Tools and approaches for the elimination stage of neglected tropical diseases[J]. Acta Trop, 2015, 141(PtB): 229-234.
  • 7Muhjazi G, Bashour H, Abourshaid N, et al. An early warning and response system for Syria [J]. Lancet, 2013, 382(9910): 2066.
  • 8Yang K, Sun LP, Huang YX, et al. A real-time platform for monitoring schistosomiasis transmission supported by Google Earth and a web-based geographical information system [J]. Geospat Health, 2012, 6(2): 195-203.
  • 9Hamburger J, Abbasi I, Kariuki C, et al. Evaluation of loop- mediated isothermal amplification suitable for molecular monitoring of schistosome-infected snails in field laboratories [J]. Am J Trop Med Hyg, 2013, 88(2): 344-351.
  • 10Yang K, Sun LP, Liang YS, et al. Schistosoma japonicum risk in Jiangsu province, People's Republic of China: identification of a spatio-temporal risk pattern along the Yangtze River[J].Geospat Health, 2013, 8(1): 133-142.

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部