期刊文献+

CRISPR-Cas基因组改造技术研究进展 被引量:10

Research progress on the genome modification technologies of CRISPR-Cas
下载PDF
导出
摘要 CRISPRs-Cas系统是一种细菌获得性免疫系统,为一段规律成簇间隔短回文重复,保护细菌和古生菌免遭病毒、质粒等的入侵。这种免疫系统是由一种小RNA和多结构域蛋白质/蛋白复合物构成,其作用机理可能与真核生物的RNA干扰过程类似。这个系统已发展为一种高效、特异、操作简单易行的基因修饰工具,与TALEN、ZFN相比,CRISPR-Cas系统的出现使得基因编辑变得更加有效和简易,具有更大的潜力。CRISPR/Cas系统已成功应用到细胞、干细胞、小鼠、斑马鱼及植物等多种生物,显示了其强大的基因编辑优点。综述了CRISPR-Cas系统的技术原理及其在生物学研究中的应用最新研究进展,并探讨了该技术的发展前景。 CRISPRs-Cas is the elucidation of the prokaryotic adaptive immune system and clustered regularly interspaced short palindromic repeats, which protects bacteria and archaea against viruses or conjugative plasmids. The immunity system consists of bacteria RNA molecules and versatile multi-domain proteins or protein complexes, which may be similar to the mechanism of RNA interference. CRISPR -Cas interference machines are utilized to develop into a genome editing tools with efficiency, specialization and simplicity. Distinct from TALEN and ZFN, the CRISPR-Cas system has recently emerged as a potentially facile and efficient alternative tool. Currently, researches have already modified the genome of cell, IPS, mouse, zebra, fish and plant with this system that show powerful ability to edit gene. The technical principles of CRISPR -Cas system and the latest progress on the application in biological study of CRISPR/Cas system was reviewed, and the development future of the system was discussed.
出处 《广东农业科学》 CAS CSCD 北大核心 2014年第2期149-152,共4页 Guangdong Agricultural Sciences
基金 国家自然科学基金青年基金(31201918) 广东省自然科学基金博士启动项目(s2012040007744) 广东省科技厅农业攻关项目(2012B020306010)
关键词 规律成簇间隔短回文重复(CRISPRs) 内切酶 同源重组机制 非同源末端连接机制 脱靶效应 clustered regularly interspaced short palindromic repeats (CRISPRs) endonuelease homologous recombination non-homologous end joining off-target effect
  • 相关文献

参考文献2

二级参考文献35

  • 1Spitz F, Furlong EE. Transcription factors: from enhancerbinding to developmental control. Nat Rev Genet 2012; 13:613-626.
  • 2Blancafort P, Segal D J, Barbas CF 3rd. Designing transcription factor architectures for drug discovery. Mol Pharmacol 2004; 66:1361-1371.
  • 3Sera T. Zinc-finger-based artificial transcription factors and their applications. Adv Drug Deliv Rev 2009; 61:513-526.
  • 4Beerli RR, Segal D J, Dreier B, Barbas CF 3rd. Toward control- ling gene expression at will: specific regulation of the erbB- 2/HER-2 promoter by using polydactyl zinc finger proteins constructed from modular building blocks. Proc Natl Acad Sci USA 1998; 95:14628-14633.
  • 5Beerli RR, Dreier B, Barbas CF 3rd. Positive and negative regulation of endogenous genes by designed transcription fac- tors. Proc NatI Acad Sci USA 2000; 97:1495-1500.
  • 6Zhang F, Cong L, Lodato S, Kosuri S, Church GM, Arlotta P. Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. Nat Biotechnol 2011; 29:149-153.
  • 7Moscou M J, Bogdanove AJ. A simple cipher governs DNA recognition by TAL effectors. Science 2009; 326:1501.
  • 8Boch J, Scholze H, Schornack S, et al. Breaking the code of DNA binding specificity of TAL-type IIl effectors. Science 2009; 326:1509-1512.
  • 9Maeder ML, Linder S J, Reyon D, et al. Robust, synergistic regulation of human gene expression using TALE activators. Nat Methods 2013; 10:243-245.
  • 10Perez-Pinera P, Ousterout DG, Brunger JM, et al. Synergistic and tunable human gene activation by combinations of syn- thetic transcription factors. Nat Methods 2013; 10:239-242.

共引文献282

同被引文献84

  • 1Jemal,A.,Bray,F., Center, M.M., Ferlay, J., Ward, E., Forman,D., Global cancer statistics. CA:a cancer journal for clinicians.2011,61(2):69-90.
  • 2Miao, P., Sheng, S., Sun, X., Liu, J., Huang, G., Lactate dehydrogenaseA in cancer:a promising target for diagnosis andtherapy.IUBMB life 2013,65(11):904-910.
  • 3Warburg,O.,[Origin of cancer cells].Oncologia 1956,9(2):75-83.
  • 4Mussolino, C., Cathomen, T.,RNA guides genome engineering.Nature biotechnology,2013,31(3): 208-209.
  • 5Yuyu Niu, Bin Shen, Yiqiang Cui, etal. Gen- eration of Gene- Modified Cynomolgus Monkey via Cas9/RNA- Mediated Gene Targeting in One- Cell Embryos[J]. Cell. 2013,156(4) :836-843.
  • 6Wen Xue, Sidi Chen, Hao Yin, etal. CRISPR- mediated direct mutation of cancer genes in the mouse liver[J]. Na- ture. 2014,514(7522) :380-384.
  • 7Hsin-Kai Liao, Ying Gu, Arturo Diaz, etal. Use of the CRISPR/Cas9 system as an intracellular defense against HIV-1 infec- tion in human cells[J]. Nature communica- tions. 2015, (6) :6413.
  • 8Qiwei Shan, Yanpeng Wang, Jun Li, etal. Targeted genome modification of crop plants using a CRISPR-Cas system[J]. Nature biotechnology. 2013, 31 ( 8 ): 686-688.
  • 9Sidi Chen, Neville E. Sanjana, Kaijie Zhengetal, etal. Genome - wide CRISPR Screen in a Mouse Model of Tumor Growth and Metastasis[J]. Cell. 2015,160 (6) :1246-1260.
  • 10Hongbing HAN,Yonghe MA,Tao WANG, etal. One-step generation of myostatin gene knockout sheep via the CRISPR/Cas9 system[J].Front. Agr. Sci. Eng. 2014,1(1):2 -5.

引证文献10

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部