期刊文献+

ENCODE计划和功能基因组研究 被引量:5

The ENCODE project and functional genomics studies
下载PDF
导出
摘要 人类基因组计划完成以来,科学家们一直在努力阐释基因组信息所代表的生物学意义。自2003年开始,美国国家人类基因组研究所(National Human Genome Research Institute,NHGRI)投资近3亿美元启动"DNA元件百科全书(Encyclopedia of DNA Elements,ENCODE)"计划,集结了来自美国、中国、英国、日本、西班牙和新加坡等国家的32个实验室的440余名科学家,共同鉴定并分析人类基因组中所有的功能调控元件。高通量测序技术等实验手段的发展和生物信息学技术的不断完善使得ENCODE计划取得了丰硕的成果:确定了甲基化和组蛋白修饰等表观修饰区域及其对染色质结构的作用,进而确定染色质结构的改变影响基因表达;确定了转录因子及其结合位点的信息,并构建了转录因子调控网络;进一步修订更新了假基因和非编码RNA数据库;并确定了调控序列的单核苷酸多态性(Single nucleotide polymorphism,SNP)并与疾病相关联。这些发现一方面有助于系统解析基因和基因组信息、调控元件的调控作用以及非编码区转录调控等分子机制;同时也将为转化医学等生命科学研究领域提供丰富的数据来源。文章综述了高通量测序技术等实验手段的发展和生物信息学技术的不断完善对ENCODE计划的贡献、表观遗传学研究与ENCODE计划的关联性、ENCODE计划的主要科学成果等,同时展望了ENCODE计划对基础医学、临床医学和转化医学等生命科学研究领域的巨大推动作用。 Upon the completion of the Human Genome Project, scientists have been trying to interpret the underlying genomic code for human biology. Since 2003, National Human Genome Research Institute (NHGRI) has invested nearly $0.3 billion and gathered over 440 scientists from more than 32 institutions in the United States, China, United Kingdom, Japan, Spain and Singapore to initiate the Encyclopedia of DNA Elements (ENCODE) project, aiming to identify and ana-lyze all regulatory elements in the human genome. Taking advantage of the development of next-generation sequencing technologies and continuous improvement of experimental methods, ENCODE had made remarkable achievements: identi- fied methylation and histone modification of DNA sequences and their regulatory effects on gene expression through alter- ing chromatin structures, categorized binding sites of various transcription factors and constructed their regulatory networks, further revised and updated database for pseudogenes and non-coding RNA, and identified SNPs in regulatory sequences associated with diseases, These findings help to comprehensively understand information embedded in gene and genome sequences, the function of regulatory elements as well as the molecular mechanism underlying the transcriptional regulation by noncoding regions, and provide extensive data resource for life sciences, particularly for translational medicine. We re- viewed the contributions of high-throughput sequencing platform development and bioinformatical technology improve- ment to the ENCODE project, the association between epigenetics studies and the ENCODE project, and the major achievement of the ENCODE project. We also provided our prospective on the role of the ENCODE project in promoting the development of basic and clinical medicine.
出处 《遗传》 CAS CSCD 北大核心 2014年第3期237-247,共11页 Hereditas(Beijing)
基金 中国科学院干细胞与再生医学研究战略性科技先导专项子课题(编号:XDA01040405)资助
关键词 ENCODE 表观遗传学 新一代测序技术 转录调控 ENCODE epigenetics next-generation sequencing transcriptional regulation
  • 引文网络
  • 相关文献

参考文献36

  • 1Qu HZ, Fang XD. A brief review on the Human Ency-clopedia of DNA Elements (ENCODE) project. Genomics Proteomics Bioinformatics, 2013, 11 (3): 135-141.
  • 2Weinstock GM. ENCODE: more genomic empowerment. Genome Res, 2007, 17(6): 667-668.
  • 3ENCODE Project Consortium, Birney E, Stamatoyanno- poulos JA, Dutta A, Guigo R, Gingeras TR, Margulies EH, Weng Z, Snyder M, Dermitzakis ET, Thurman RE, Kuehn MS, Taylor CM, Neph S, Koch CM, Asthana S, Malhotra A, Adzhubei I, Greenbaum JA, Andrews RM, Flicek P, Boyle PJ, Cao H, Carter NP, Clelland GK, Davis S, Day N, Dhami P, Dillon SC, Dorschner MO, Fiegler H, Giresi PG, Goldy J, Hawrylycz M, Haydock A, Humbert R, James K D, Johnson BE, Johnson EM, Frum TT, Rosenzweig ER, Kamani N, Lee K, Lefebvre GC, Navas PA, Neri F, Parker SC, Sabo PJ, Sandstrom R, Shafer A, Vetrie D, Weaver M, Wilcox S, Yu M, Collins FS, Dekker J, Lieb JD, TuUius TD, Crawford GE, Sunyaev S, Noble WS, Dunham I, Denoeud F, Reymond A, Kapranov P, Rozowsky J, Zheng D, Castelo R, Frankish A, Harrow J, Ghosh S, Sandelin A, Hofacker IL, Baertsch R, Keefe D, Dike S, Cheng J, Hirsch HA, Sekinger EA, Lagarde J, Abril JF, Shahab A, Flamm C, Fried C, Hackermuller J, Hertel J, LindemeyerM, Missal K, Tanzer A, Washietl S, Korbel J, Emanue- lsson O, Pedersen JS, Holroyd N, Taylor R, Swarbreek D, Matthews N, Dickson MC, Thomas D J, Weirauch MT, Gilbert J, Drenkow J, Bell I, Zhao X, Srinivasan KG, Sung WK, Ooi HS, Chiu KP, Foissac S, Alioto T, Brent M, Pachter L, Tress ML, Valencia A, Choo SW, Choo CY, Ucla C, Manzano C, Wyss C, Cheung E, Clark TG, Brown JB, Ganesh M, Patel S, Tammana H, Chrast J, Henrichsen CN, Kai C, Kawai J, Nagalakshmi U, Wu J, Lian Z, Lian J, Newburger P, Zhang X, Bickel P, Mattick JS, Carninci P, Hayashizaki Y, Weissman S, Hubbard T, Myers RM, Rogers J, Stadler PF, Lowe T M, Wei C L, Ruan Y, Struhl K, Gerstein M, Antonarakis SE, Fu Y, Green ED, Karaoz U, Siepel A, Taylor J, Liefer L A, Wetterstrand KA, Good P J, Feingold EA, Guyer MS, Cooper GM, Asimenos G, Dewey CN, Hou M, Nikolaev S, Montoya-Burgos JI, Loytynoja A, Whelan S, Pardi F, Massingham T, Huang H, Zhang NR, Holmes I, Mullikin JC, Ureta-Vidal A, Paten B, Seringhaus M, Church D, Rosenbloom K, Kent WJ, Stone EA, NISC Comparative Sequencing Program, Baylor College of Medicine Human Genome Sequencing Center, Washington University Genome Sequencing Center, Broad Institute, Children's Hospital Oakland Research Institute, Batzoglou S, Goldman N, Hardison RC, Haussler D, Miller W, Sidow A, Trinklein ND, Zhang ZD, Barrera L, Stuart R, King DC, Ameur A, Enroth S, Bieda MC, Kim J, Bhinge AA, Jiang N, Liu J, Yao F, Vega VB, Lee CW, Ng P, Shahab A, Yang A, Moqtaderi Z, Zhu Z, Xu X, Squazzo S, Oberley MJ, Inman D, Singer MA, Richmond TA, Munn KJ, Rada-Iglesias A, Wallerman O, Komorowski J, Fowler JC, Couttet P, Bruce AW, Dovey OM, Ellis PD, Langford CF, Nix D A, Euskirchen C Hartman S, Urban AE, Kraus P, Van Calear S, Heintzman N, Kim TH, Wang K, Qu C, Hon G, Luna R, Glass CK, Rosenfeld MG, Aldred SF, Cooper S J, Halees A, Lin JM, Shulha HP, Zhang X, Xu M, Haidar JN, Yu Y, Ruan Y, Iyer VR, Green RD, Wadelius C, Farnham PJ, Ran B, Harte RA, Hinrichs AS, Trumbower H, Clawson H, Hillman-Jaekson J, Zweig AS, Smith K, Thakkapallayil A, Barber G, Kuhn RM, Karolchik D, Armengol L, Bird CP, de Bakker PI, Kern AD, Lopez- Bigas N, Martin JD, Stranger BE, Woodroffe A, Davydov E, Dimas A, Eyras E, Hallgrimsdottir I B, Huppert J, Zody MC, Abecasis GR, Estivill X, Bouffard GG, Guan X, Hansen N F, Idol J R, Maduro V V, Maskeri B, McDowell J C, Park M, Thomas P J, Young AC, Blakesley RW, Muzny DM, Sodergren E, Wheeler DA, Worley KC, Jiang H, Weinstock GM, Gibbs RA, Graves T, Fulton R, MardisER, Wilson RK, Clamp M, Cuff J, Gnerre S, Jaffe DB, Chang JL, Lindblad-Toh K, Lander ES, Koriabine M, Nefedov M, Osoegawa K, Yoshinaga Y, Zhu B, de Jong PJ Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature, 2007, 447(7146): 799-816.
  • 4American Association for Cancer Research Human Epi- genome Task Force E U, Network of Excellence, Scien- tific Advisory Board. Moving ahead with an international human epigenome project. Nature, 2008, 454(7205): 711- 715.
  • 5Shendure J, Ji H. Next-generation DNA sequencing. Nat Biotechnol, 2008, 26(10): 1135-1145.
  • 6Metzker ML. Sequencing technologies-the next generation. NatRev Genet, 2010, 11(I): 31-46.
  • 7Thurman RE, Rynes E, Humbert R, Vierstra J, Maurano MT, Haugen E, Sheffield NC, Stergachis AB, Wang H, Vemot B, Garg K, John S, Sandstrom R, Bates D, Boatman L, Canfield TK, Diegel M, Dunn D, Ebersol AK, Frum T, Giste E, Johnson AK, Johnson EM, Kutyavin T, Lajoie B, Lee BK, Lee K, London D, Lotakis D, Neph S, Neri F, Nguyen ED, Qu H, Reynolds AP, Roach V, Sail A, Sanchez ME, Sanyal A, Sharer A, Simon JM, Song L, Vong S, Weaver M, Yan Y, Zhang Z, Zhang Z, Lenhard B, Tewari M, Dorschner MO, Hansen RS, Navas PA, Stama- toyannopoulos G, Iyer VR, Lieb JD, Sunyaev SR, Akey JM, Sabo P J, Kaul R, Furey TS, Dekker J, Crawford GE, Stamatoyannopoulos JA. The accessible chromatin land- scape of the human genome. Nature, 2012, 489(7414): 75- 82.
  • 8HalTow J, Frankish A, Gonzalez JM, Tapanari E, Diekhans M, Kokoeinski F, Aken BL, Barrell D, Zadissa A, Searle S, Barnes I, Big-nell A, Boychenko V, Hunt T, Kay M, Mukherjee G, Rajah J, Despacio-Reyes G, Saunders G, Steward C, Harte R, Lin M, Howald C, Tanzer A, Derrien T, Chrast J, Waiters N, Balasubramanian S, Pei B, Tress M, Rodriguez JM, Ezkurdia I, van Baren J, Brent M, Haussler D, Kellis M, Valencia A, Reymond A, Gerstein M, Guigo R, Hubbard TJ. GENCODE: the reference human genome annotation for The ENCODE Project. Genome Res, 2012, 22(9): 1760-1774.
  • 9Natarajan A, Yardimci GG, Sheffield NC, Crawford GE, Ohler U. Predicting cell-type-specific gene expression from regions of open chromatin. Genome Res, 2012, 22(9)1711-1722.
  • 10Cheng C, Yan KK, Yip KY, Rozowsky J, Alexander R, Shou C, Gerstein M. A statistical framework for modeling gene expression using chromatin features and application to modENCODE datasets. Genome Biol, 2011, 12(2): R15.

同被引文献150

  • 1Shawn LEVY.A genome-wide association analysis implicates SOX6 as a candidate gene for wrist bone mass[J].Science China(Life Sciences),2010,53(9):1065-1072. 被引量:5
  • 2蔡禄,赵秀娟,刘国庆,等.表观遗传学前沿[M].北京:清华大学出版社,2012.191—192.
  • 3Buzanskas M E,Grossi D A,Ventura R V,et al.Genomewide association for growth traits in Canchim beef cattle[J].PLoS One,2014,9 (4):e94802.
  • 4Tsuda K,Kawahara Miki R,Sano S,et al.Abundant sequence divergence in the native Japanese cattle Mishima-Ushi(Bos taurus) detected using whole genome sequencing[J].Genomics,2013,102 (4):372-378.
  • 5Bolormaa S,Pryce J E,Kemper K E,et al.Detection of quantitative trait loci in Bos indicus and Bos taurus cattle using genommwide association studies[J].Genet Sel Evol,2013,45:43.
  • 6Michels K B,Binder A M,Dedeurwaerder S,et al.Recommendations for the design and analysis of epigenome-wide association studies[J].Nat Methods,2013,10 (10):949-955.
  • 7Pérez-Enciso M.Genomic relationships computed from either next generation sequence or array SNP data[J].J Anim Breed Genet,2014,131(2):85-96.
  • 8Hoffman J I,Simpson F,David P,et al.High throughput sequencing reveals inbreeding depression in a natural population[J].Proc Natl Acad Sci USA,2014,111(10):3 775-3 780.
  • 9Longpre K M,Kinstlinger N S,Mead E A,et al.Seasonal variation of urinary microRNA expression in male goats (Capra hircus) as assessed bynext generation sequencing[J].Gen Comp Endocrinol,2014,199:1-15.
  • 10Demeure O,Duclos M J,Bacciu N,et al.Genome wide interval mapping using SNPs identifies new QTL for growth,body composition and several physiological variables in an F2 intercross between fat and lean chicken lines[J].Genet Sel Evol,2013,45:36.

引证文献5

二级引证文献27

;
使用帮助 返回顶部