期刊文献+

基于混沌神经网络的盲检测改进新算法 被引量:3

Novel improved blind detection algorithms based on chaotic neural networks
原文传递
导出
摘要 针对Hopfield神经网络的多起点问题,提出了一种新的基于混沌神经网络的盲信号检测算法,实现了二进制移相键控信号盲检测.据此进一步提出双sigmoid混沌神经网络模型,构造了新的能量函数,且证明了该模型的稳定性,并对网络参数进行配置.仿真实验表明:混沌神经网络能够避免局部极小点且具备较强的抗噪性能,双sigmoid混沌神经网络则继承了其所有的优点,且其收敛速度更快,仅需更短的接收数据即可到达全局真实平衡点,从而降低了算法的计算复杂度,减少了运行时间. In this paper we apply the transiently chaotic Hopfield neural networks (TCHNN) to the blind signal detection algorithm with BPSK signals and solve multi-start problem of Hopfield neural networks (HNN). And in this paper we propose an improved algorithm of double sigmoid transiently chaotic Hopfield neural networks (DS-TCHNN) on the basis of TCHNN, construct a new energy function of DS-TCHNN, and prove the stability of DS-TCHNN in asynchronous update mode and synchronous update mode. Simulation results show that TCHNN can skip local minima and has better anti-noise performance than HNN. While, DS-TCHNN inherits all the advantages of TCHNN and its speed of convergence is fast. Besides, DS-TCHNN needs shorter data to reach a global true equilibrium point so that the computational complexity is reduced and the running time is shortened.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2014年第6期117-123,共7页 Acta Physica Sinica
基金 国家自然科学基金(批准号:61302155 61104103 61274080) 南京邮电大学引进人才项目(批准号:NY212022)资助的课题~~
关键词 混沌神经网络 双sigmoid混沌神经网络 盲检测 transiently chaotic Hopfield neural networks double sigmoid transiently chaotic Hopfield neural networks blind signal detection
  • 相关文献

参考文献1

二级参考文献46

共引文献9

同被引文献30

  • 1胡耀垓,李伟,胡继明.一种改进激活函数的人工神经网络及其应用[J].武汉大学学报(信息科学版),2004,29(10):916-919. 被引量:10
  • 2张志涌,BAI Erwei.SIMO含公零点信道的直接盲序列检测[J].电子学报,2005,33(4):671-675. 被引量:23
  • 3修春波,刘向东,张宇河,唐运虞.一种新的混沌神经网络及其应用[J].电子学报,2005,33(5):868-870. 被引量:16
  • 4倪志伟.BP网络中激活函数的深入研究[J].安徽大学学报(自然科学版),1997,21(3):48-51. 被引量:6
  • 5ZHANG Y5ZHANG Z Y.Blind multi-valued signals detection using discrete Hopfield network[C]//Proc.2010 Sixth International Conference on Natural Computation.Beijing:IEEE Press,2010:1079-1083.
  • 6SENGUPTA DjILTIS R A.Neural solution to the multitarget tracking data association problem[J].IEEE Trans.Aerospace and Electronic Systems,1989,25(1):96-108.
  • 7MA R N,CHU P,ZHANGS R.Stability conditions for discrete delayed Hopfield neural networks[C]//Proc.Third International Conference on Natural Computation.Haikou,China:IEEE Press,2007:468-472.
  • 8SHEN Y,WANG J.Robustness analysis of global exponential stability of recurrent neural networks in the presence of time delays and random disturbances[J].IEEE Trans.Neural Networks and Learning Systems.2012.23(1):87-96.
  • 9MOULINES E,DUHAMEL P,CARDOSO J F,et al.Subspace methods for the blind identification of multichannel FIR filters[J].IEEE Trans.Signal Processing,1995.43(2):516-525.
  • 10GIANNAKIS G B,STOICA P,HUA Y B.Signal processing advances in wireless and mobile communication[M].Upper Saddle River,NJ,USA:Prentice Hall,2001.

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部