期刊文献+

基于加权特征空间信息视觉词典的图像检索模型 被引量:10

Image retrieval model based on visual vocabulary with weighted feature space information
下载PDF
导出
摘要 针对传统的视觉词袋模型中视觉词典对底层特征量化时容易引入量化误差,以及视觉单词的适用性不足等问题,提出了基于加权特征空间信息视觉词典的图像检索模型。从产生视觉词典的常用聚类算法入手,分析和探讨了聚类算法的特点,考虑聚类过程中特征空间的特征分布统计信息,通过实验对不同的加权方式进行对比,得出效果较好的均值加权方案,据此对视觉单词的重要程度加权,提高视觉词典的描述能力。对比实验表明,在ImageNet图像数据集上,相对于同源视觉词典,非同源视觉词典对视觉空间的划分影响较小,且基于加权特征空间信息视觉词典在大数据集上更加有效。 Concerning the quantization error when the local features were quantified by the visual vocabulary in traditional Bag-of-Visual-Word (BoVW) model,an image retrieval model based on visual vocabulary with weighted feature space information was proposed.Considered the clustering method which was used to generate the visual codebook,the statistic information of the feature space was analyzed during the clustering process.Through the comparison of different weighting methods by experiments,the best weighting method,mean weighted average,was found to weight the visual words to improve the descriptive ability of the codebook.The experiment on ImageNet dataset shows that,compared to homologous visual codebook,non-homologous visual codebook has less impact on dividing the visual space,and the effects of the weighted feature space based visual codebook on big dataset are better.
作者 董健
出处 《计算机应用》 CSCD 北大核心 2014年第4期1172-1176,1226,共6页 journal of Computer Applications
基金 盐城师范学院自然科学研究基金资助项目(11YCKL032)
关键词 图像搜索 视觉词袋模型 加权特征空间信息 视觉词典 聚类算法 image retrieval bag of visual word model weighted feature space visual vocabulary cluster algorithm
  • 相关文献

参考文献19

  • 1TEMPLE K. What happens in an Internet minute? [ EB/OL]. (2012 -03 - 13) [2013 -05 - 15]. http://scoop, intel, com/what- happens-in-an-intemet -minute/.
  • 2How many photos are uploaded to Flickr every day, month, year? [EB/OL]. (2012-03 -20) [2013 -06 -05]. http://www. flickr, tom/photos/franckmichel/6855169886/.
  • 3SMEULDERS A W M, WORRING M, SANTINI S, et al. Content- based image retrieval at the end of the early years [ J]. IEEE Trans- actions on Pattern Analysis and Machine Intelligence, 2012, 22 (12) : 1349 - 1380.
  • 4LEW M S, SEBE N, DJERABA C, et al. Content-based multimedi- a information retrieval: state of the art and challenges [ J]. ACM Transactions on Multimedia Computing, Communications, and Ap- plications, 2011,2(1) : 1 - 19.
  • 5DATTA R, JOSHI D, LI J, et al. Image retrieval: Ideas, influ- ences, and trends of the new age [ J]. ACM Computing Surveys, 2008, 40(2) : Article No. 5.
  • 6TinEye. TinEye Reverse Image Search [ EB/OL]. [ 2013 -02 - 14]. http://www, tineye, com/.
  • 7Google. Google Images [ EB/OL]. [ 2013 - 02 - 14] http://ima- ges. google, tom/.
  • 8HAAS J P, HUESKE F, MARKL V. Detecting attribute dependen- cies from query feedback [ C]//VLDB '07: Proceedings of the 33rd International Conference on Very Large Data Bases. Toronto: VLDB Endowment, 2007:830-841.
  • 9WANG J, POHLMEYER E, HANNA B, et al. Brain state decoding for rapid image retrieval [ C]// MM '09: Proceedings of the 17th ACM International Conference on Multimedia. New York: ACM, 2009:945 - 954.
  • 10朱正礼,赵春霞,侯迎坤,范燕.基于多特征的旋转不变纹理图像检索[J].南京理工大学学报,2012,36(3):375-380. 被引量:6

二级参考文献11

  • 1Z Jianguo ,Tan Tieniu. Brief review of invariant texture analysis methods [ J ]. Pattern Recognition, 2001,35 (3) :735-747.
  • 2Tamura H S, Yamawaki T. Textural features corresponding to visual perception [ J ]. IEEE Transactions on Systems, Man,and Cybernetics ,1978 ,SMC-8(6) :460-473.
  • 3Haraliek R M,Shanmugam K,Dinstein I. Textural features for image classification [ J ]. IEEE Transactions on Systems ,Man ,and Cybernetics, 1973 ,SMC-3 ( 6 ) :610 -621.
  • 4Eichmann G, Kasparis T. Topologically invariant texture descriptors [ J ]. Computer Vision, Graphics, and Image Processing, 1988,41 (3) :267-281.
  • 5Lam W K, Li C K. Rotated texture classification by improved iterative morphological decomposition [ J ]. IEE Proceedings:Vision, Image and Signal Processing, 1997,144(3) :171-179.
  • 6Han Ju, Ma Kaikuang. Rotation-invariant and scale- invariant Gabor features for texture image retrieval [ J ]. Image and Vision Computing, 2007,25 (9) : 1474-1481.
  • 7Manthalkar R, Biswas P K, Chatterji B N. Rotation and scale invariant texture features using discrete wavelet packet transform [ J ]. Pattern Recognition Letters, 2003,24(14) :2455-2462.
  • 8Kokare M, Biswas P K, Chatterji B N. Rotation- invariant texture image retrieval using rotated complex wavelet filters [ J ]. IEEE Transactions on Systems, Man, and Cybernetics. Part B : cybernetics, 2006, 36 (6) : 1273-1282.
  • 9Cunha A L, Zhou Jianping, Do M N. The nonsubsampled contourlet transform :Theory,design, and applications [ J ]. IEEE Transactions on Image Processing, 2006, 15 (10) : 3089-3101.
  • 10Manjunath B S, Ma W Y. Texture features for browsing and retrieval of image data [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996, 18 (8) :837-842.

共引文献5

同被引文献78

  • 1邱方鹏,冯玉才,梁俊杰.基于纹理和形状的图像相关反馈检索[J].计算机应用,2005,25(4):775-777. 被引量:8
  • 2肖新标,金学松,温泽峰.钢轨扣件失效对列车动态脱轨的影响[J].交通运输工程学报,2006,6(1):10-15. 被引量:45
  • 3DAHANE G M, VISHWAKARMA S. Content based image retrieval system [ J]. International Journal of Engineering and Innoval:ive Technology, 2012, 1(5): 92-96.
  • 4LAI C-C, CHEN Y-C. A user-oriented image retrieval system based on interactive genetic algorithm [ J]. IEEE Transactions on Instru- mentation and Measurement, 2011, 60(10): 3318-3325.
  • 5WU Y, WU Y. Shape-based image retrieval using combining global and local shape features [ C]//CISP '09: Proceedings of the 2nd In- teruational Congress on Image and Signal Processing. Piscataway: IEEE, 2009:1-5.
  • 6RUI Y, HUANG T S, MEHROTRA S. Content-based image retriev- al with relevance feedback in MARS [ C] // Proceedings of the 1997 IEEE International Cmfference on Image Processing. Piscataway: IEEE, 1997,2:815-818.
  • 7DELP E J, MITCHELL 0 R. Image compression using block trun- cation coding [ J]. IEEE Transactions on Communications, 1979, 27(9) : 1335 - 1342.
  • 8YAP P T, PARAMESRAN R, OMG S H. Image analysis by Kraw- tchouck moments [ J]. IEEE Transactions on Image Processing, 2003, 12(11) : 1367 - 1377.
  • 9SUDHIR R, BABOO L D S S. An efficient CBIR technique with YUV color space and texture features [ J]. Computer Engineering and Intelligent Systems, 2011, 2(6): 778-785.
  • 10BOUNTHANH M, HAMAMOTO K, ATTACHOO B, et al. Con- tent-based image retrieval system based on combined and weighted multi-features [ C]//Proceedings of the 13th International Sympo- sium on Communications and Information Technologies. Piscat- away: IEEE, 2013:449-453.

引证文献10

二级引证文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部