摘要
认为在突发事件的舆情传播过程中,网络论坛中影响力大的关键节点左右传播的走势。设计一种完整的网络舆情节点挖掘和分类的技术方法,包括原始数据挖掘、数据结构化、节点影响力测算与识别、关键节点论坛影响力计算、关键节点分类等,涉及GooSeeker、Gephi、LeaderRank等算法和软件,并以"7·23动车事故"为例进行具体分析。通过研究揭示出网络舆情的结构复杂性、无标度性、子社区结构等特征,得到"网络名人型"和"事件关注型"两类关键节点的演化规律,对网络舆情的科学应对具有参考价值。
In the information spread process of emergencies, the powerful key nodes in BBS often decide the spread trend of Internet public opinion. This paper designed a technical method which integrating data mining, data structure, node measuring and recognition, key nodes influence calculation, key node classification etc. , involving the algorithm and software such as GooSeeker, Gephi, LeaderRank, taking the 723 train accident as the example. It revealed the characteris- tics of network public opinion including the complexity of structure, scale-free and community structure etc. , and got two kinds of key nodes as "web celebrities" and "event focus". This has the reference value to the network public opinion re- sponse.
出处
《图书情报工作》
CSSCI
北大核心
2014年第4期65-70,共6页
Library and Information Service
基金
2012年度国家自然科学基金重点支持项目"‘情景-应对型’非常规突发事件演化规律动态评估预测模型与方法"(项目编号:91224001)研究成果之一