期刊文献+

热辐射引发设备二次损坏概率的BP神经网络预测 被引量:1

Prediction of probability of equipment secondary damage caused by thermal radiation based on BP neural network
下载PDF
导出
摘要 为提高化工园区火灾热辐射风险预测精度,预防设备二次损坏事故的发生,通过建立3层反向传播(BP)神经网络模型来预测设备损坏概率,研究二次损坏概率与影响因素参数(设备容积,视角系数,与爆炸点的距离)之间关系。以用多米诺风险理论计算出的设备二次损坏概率为样本集,对建立的BP神经网络模型进行训练、测试和误差分析。结果表明,设备损坏概率与神经网络预测的概率之间最小误差值为9.962 5×10-3。设备二次损坏概率随距离的增大而减小,且随设备容积、视角系数的增大而增大。其中,视角系数对损坏概率的影响最明显。 For the sake of improving chemical industry park fire thermal radiation risk prediction accura- cy and preventing equipment secondary damage accident, a BP neural network model was built for predic- tion the damage probability. Relationships between secondary damage probabilities and parameters, such as volume of equipment, view factor and distance, were discussed. Damage probabilities related to differ- ent parameters were calculated based on theory of Domino risk and selected as samples for training and tes- ting the network. Difference between prediction and actual results was also discussed. The results show that minimum mean squared error is 9. 962 5×10^-3, that the damage probability decreases with increase of distance and increases with increase of view factor, and that the influence of view factor on damage probability is most obvious.
作者 梁瑞 侯杉杉
出处 《中国安全科学学报》 CAS CSCD 北大核心 2014年第2期77-81,共5页 China Safety Science Journal
基金 国家质检公益基金资助(201210026,201310152) 甘肃省高等学校基本科研业务费项目(1205ZTC067)
关键词 反向传播(BP)神经网络 二次损坏概率 多米诺 热辐射 误差值 预测 back propagation (BP) neural network twice damage probability Domino thermal radiation error prediction
  • 相关文献

参考文献12

二级参考文献68

共引文献342

同被引文献32

  • 1刘艳华.基于多米诺效应的城市燃气管网事故后果研究[D].成都:西南石油大学,2009.
  • 2师立晨,刘骥,魏利军,吴宗之.重大危险源多米诺效应的后果分析[J].中国安全生产科学技术,2007,3(6):44-48. 被引量:28
  • 3KADRI F, CHATELET E, CHEN G P. Method for quantitative assessment of the domino effeet in industrial sites[J]. Process Safety and Environmental Protection, 2013, 91 ( 6 ): 452-462.
  • 4COZZANI V, GUBINELLI G, ANTONIONI G, et al. The assessment of risk caused by domino effect in quantitative area risk analysis[J]. Journal of Hazardous Materials, 2005, 127 ( 1- 3): 14-30.
  • 5Official Journal of the European Communities. The control of majoraecident hazards involving dangerous substances: Council Directive 96/82FEC of 9 December 1996[S]. Brussels: OJEC, 1997:97-1071.
  • 6KHAN F I, ABBASI S A. DOMIFFECT (Domino effect) : User-friendly software for domino effect analysis[J]. Environmental Modelling & Software, 1998, 13 (2): 163-177.
  • 7COZZANI V, ANTONIONI G, SPADONI G. Quantitative assessment of domino scenarios by a GIS-based software tool[ J ].Journal of Loss Prevention in the Process Industries, 2006, 19 (5): 463-477.
  • 8RENIERS G L L, DULLAERT W. e Domprevplannmg : User- friendly software for planning domino effects prevention[J]. Safety Science, 2007,45 ( 10): 1060-1081.
  • 9KHAKZAD N, RENIERS G. Risk-based design of process plants with regard to domino effects and land use planning[J]. Journal of Hazardous Materials, 2015 ( 299 ): 289-297.
  • 10KHAKZAD N. Application of dynamic Bayesian network to risk analysis of domino effects in chemical infrastructures[J]. Reliability Engineering and System Safety, 2015 ( 138): 263-272.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部