期刊文献+

一种四参数的光伏组件在线故障诊断方法 被引量:32

A Survey of Online Fault Diagnosis for Photovoltaic Modules Based on Four Parameters
下载PDF
导出
摘要 分析光伏组件在短路、异常老化状态下的输出特性,提出一种基于开路电压、短路电流、最大功率点电压和电流四参数的光伏组件在线诊断短路及异常老化故障的方法。建立了故障类型因子K,通过比较K与标准值的差异判断组件是否存在短路和异常老化故障。发生故障即可进行在线故障程度分析和预警:短路故障时,利用神经网络方法诊断组件中电池短路的块数;异常老化故障时,利用填充因子值获得组件老化程度。仿真及实验结果显示该方法具有较高的准确率,证明了方法的可行性和有效性。 The output characteristics of photovoltaic (PV) modules under short-circuit or abnormal degradation conditions were analyzed. The online fault diagnosis method for PV modules based on four parameters, namely open circuit voltage, short-circuit current, the voltage of maximum power point and the current of maximum power point were proposed. Then the fault type factor K was introduced. Through comparing the difference between the value of K and the standard value, the type of faults could be determined. Once the faults are certain, the extent of faults and the early warnings are analyzed automatically online. When the PV modules are short-circuited, the artificial neural network can be utilized for acquiring the number of short-circuited ceils. When the PV modules are in abnormal degradation, the value of fill factor (FF) can be utilized to acquire the extent of degradation. The results of simulations and experiments show that the method has a high accuracy rate, and its feasibility and effectiveness are proved.
出处 《中国电机工程学报》 EI CSCD 北大核心 2014年第13期2078-2087,共10页 Proceedings of the CSEE
基金 国家自然科学基金项目(51107079)~~
关键词 光伏组件 在线诊断 异常老化 神经网络 故障类型因子 photovoltaic (PV) modules online diagnosis abnormal degradation neural network fault type factor
  • 相关文献

参考文献21

  • 1Syafaruddin E,Karatepe T H.Controlling of artificial neural network for fault diagnosis of photovoltaic array[C]//16th International Conference on Intelligent System Application to Power Systems.Hersonissos:IEEE,2011:1-6.
  • 2Chouder A,Silvestre S.Automatic supervision and fault detection of PV systems based on power losses analysis[J].Energy Conversion and Management,2010,51(10).1929-1937.
  • 3王培珍,郑诗程.基于红外图像的太阳能光伏阵列故障分析[J].太阳能学报,2010,31(2):197-202. 被引量:75
  • 4Nian Bei,Fu Zhizhong.Automatic detection of defects in solar modules:image processing in detecting[C]// International Conference on Wireless Communications Networking and Mobile Computing.Chengdu,China:IEEE,2010:1-4.
  • 5Zhu Yongqiang,Wang Wenshan.Fault diagnosis method and simulation analysis for photovoltaic array[C]//International Conference on Electrical and Control Engineering.Yichang,China:IEEE,2011:1569-1573.
  • 6胡义华,陈昊,徐瑞东,李瑞.基于最优传感器配置的光伏阵列故障诊断[J].中国电机工程学报,2011,31(33):19-30. 被引量:29
  • 7Takumi T,Junji Y,Masayoshi I.Fault detection by signal response in PV module strings[C]//Photovoltaic Specialists on Industrial Electronics.San Diego,CA,USA:IEEE,2008:1-5.
  • 8Takumi T,Junji Y,Masayoshi I.Disconnection detection using earth capacitance measurement in photovoltaic module string[J].Progress in Photovoltaics,2008,16(8).669-677.
  • 9丁金磊,程晓舫,翟载腾,查珺,茆美琴.决定晶体硅太阳电池工作状态的独立参量的确定[J].中国工程科学,2007,9(4):94-98. 被引量:4
  • 10翟载腾,程晓舫,杨臧健,茆美琴.太阳电池一般电流模型参数的解析解[J].太阳能学报,2009,30(8):1078-1082. 被引量:43

二级参考文献173

共引文献560

同被引文献258

引证文献32

二级引证文献203

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部