期刊文献+

新型自吸式多相搅拌槽临界悬浮特性的实验研究 被引量:5

Experimental Investigation on Solid-Liquid Suspension in a New Self-aeration Monolayer Multiphase Stirred Tank
原文传递
导出
摘要 在不通气的情况下,对新型多相搅拌槽进行实验,得出了其固相含量ω、颗粒密度ρ、搅拌槽内径D与临界悬浮转速Nc的关系,在相同条件下,与给定结构尺寸的标准搅拌槽对比了临界悬浮转速.结果表明,Nc随固相分率增加和粒径dp增大而增大,不利于达到良好的悬浮效果;固相颗粒密度越大,临界悬浮转速随之增大;槽径增大使达到悬浮状态的临界转速降低.该新型搅拌槽临界悬浮转速的关联式是N0.21c=6.3dp(gΔρ/ρL)0.45ω0.19/D0.55;同一固相分率下,新型多相搅拌槽的临界悬浮转速比标准搅拌槽降低了30%,在较低转速下就能使颗粒悬浮. A new self-made tornado flow stirred tank was used to carry out experiments without ventilation, the relationship of critical suspension rotational speed (No) with the solid content ca, particle density p, and inner diameter (D) of the suspension stirred tank was obtained. Under the same geometrical conditions, the new stirred tank was compared with a standard stirred tank in Nc. The results show that Nc increases with the increase of solid phase fraction φ and particle size dp, which is not conducive to good suspension. With the increase of solid particle density, Arc goes up. With the increase of the tank diameter, Nc decreases. An expression for Nc of the new stirred tank is obtained, Nc=6.3dp^0.21(g△p/PL)0.45ω^0.19/D^0.55. At the same solid phase fraction, Nc in the new stirred tank is below 30% of that in a standard suspension stirred tank, which means that the particles can be suspended at a lower stirring speed.
出处 《过程工程学报》 CAS CSCD 北大核心 2014年第2期229-233,共5页 The Chinese Journal of Process Engineering
关键词 临界悬浮转速 多相搅拌槽 中心龙卷流 固液悬浮 critical suspension rotational speed multiphase stirred tank central tornado flow solid-liquid suspension
  • 相关文献

参考文献18

二级参考文献129

共引文献126

同被引文献51

  • 1高勇,郝惠娣,谭嘎子,张永芳.中心龙卷流型搅拌槽流动特性的CFD研究[J].石油化工设备技术,2009,30(6):47-50. 被引量:4
  • 2郝惠娣,孙吉兴,王刚.加高型中心龙卷流型搅拌槽液体搅拌性能研究[J].石油化工,2004,33(9):847-851. 被引量:8
  • 3张凤涛,刘芳,黄雄斌.高固含搅拌槽内临界离底悬浮转速的数值模拟[J].过程工程学报,2007,7(3):439-444. 被引量:20
  • 4方键.侧进式搅拌槽内多相流动与混合性能的研究[D].南京:南京工业大学,2012:12-13.
  • 5Zhu H, Nienow A W, Bujalski W, et al. Mixing Studies in a Model Aerated Bioreactor Equipped with an Up-or a Down-pumping 'Elephant Ear' Agitator: Power, Hold-up and Aerated Flow Field Measurements [J]. Chem. Eng. Res. Des., 2009, 87(3): 307-317.
  • 6Brucato A, Ciofalo M, Grisafi F, et al. Numerical Prediction of Flow Fields in Baffled Stirred Vessels: A Comparison of Alternative Modeling Approaches [J]. Chem. Eng. Sci., 1998, 53(21): 3653-3684.
  • 7Murthy B N, Ghadge R S, Joshi J B. CFD Simulations of Gas-Liquid-Solid Stirred Reactor Prediction of Critical Impeller Speed for Solid Suspension [J]. Chem. Eng. Sci., 2007, 62(5): 7184-7195.
  • 8Ochieng A, Lewis A E. CFD Simulation of Solids Off-bottom Suspension and Cloud Height [J]. Hydrometallurgy, 2006, 82(1/2): 1-12.
  • 9Ochieng A, Lewis A E. Nickel Solids Concentration Distribution in a Stirred Tank [J]. Chem. Eng., 2006, 19(2): 180-189.
  • 10Zhao H L, Zhang T A, Liu Y, et al. Numerical Simulations of Solid-Liquid Stirred Tank with an Improved Intermig Impeller [A]. Aibing Y, Kejun D, Runyu Y, et al. AIP Conference Proceedings [C]. New York: American Institute of Physics, 2013. 1286-1289.

引证文献5

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部