期刊文献+

一种带自适应飞行时间因子的粒子群算法 被引量:2

Particle Swarm Optimization with Adaptive Flying Time Factor
下载PDF
导出
摘要 作为一种新型智能算法,粒子群算法具有概念简单、易于实现等特点,但也存在容易陷入局部最优的缺点。为了尽可能找到问题的最优解,提高粒子群算法的收敛速度,提出一种带自适应飞行时间因子的粒子群算法,在算法中引入种群多样性和种群进化度两个参数,并根据这两个参数对算法性能的影响,让飞行时间因子随着这两个参数自适应改变。通过对4个基准函数的测试表明,改进后的粒子群算法较其他几种粒子群算法在收敛速度和收敛精度上都有一定提高。 As a new intelligence algorithm,particle swarm optimization with advantages of simple conception and easy implement also suffers the high risk of trapping in a local optimum. To find the optimal solution,a particle swarm optimization algorithm with adaptive flying time factor was presented. Two parameters of species diversity and popu[a tion evolution degree were introduced,and the flying time factor changed with these two parameters adaptively. The test of the four benchmark functions shows that the modified particle swarm optimization algorithm is better in convergence speed and convergence accuracy compared with other kinds of particle swarm optimization algorithms.
出处 《山东科技大学学报(自然科学版)》 CAS 2014年第2期81-85,共5页 Journal of Shandong University of Science and Technology(Natural Science)
基金 国家自然科学基金项目(61370207)
关键词 粒子群算法 飞行时间因子 自适应 智能算法 最优化 particle swarm optimization flying time factor adaptive intelligence algorithm optimization
  • 相关文献

参考文献12

  • 1Kenndy J,Eberhart R.Particle swarm optimization[C] //IEEE International Conference on Neural Networks.Piscataway:IEEE Service Center,1995:1942-1948.
  • 2Shi Y,Eberhart R.A modified particle swarm optimizer[C] //Proceedings of IEEE International Conference on Evolutionary Computation.Anchorage.IEEE Service Center,1998:69-73.
  • 3Chatterjee A,Siarry P.Nonlinear inertia weight variation for dynamic adaptation in particle swarm optimization[J] .Computers & Operations Research,2006,33 (3):859-871.
  • 4陈国初,俞金寿.增强型微粒群优化算法及其在软测量中的应用[J].控制与决策,2005,20(4):377-381. 被引量:31
  • 5Lei K,Wang F,Qiu Y,et al.An adaptive inertia weight strategy for particle swarm optimizer[C] //International Conference on Mechatronics and Information Technology.Chongqing,Dec.22,2005:51-55.
  • 6Fourie P C,Groenwold A A.The particle swarm optimization algorithm in size and shape optimization[J] .Structural and Multidisciplinary Optimization,2002,23 (4):259-267.
  • 7Jie J,Zeng J,Han C.Adaptive particle swarm optimization with feedback control of diversity[M] //Computational Intelligence and Bioinformatics.Heidelberg:Springer,2006:81-92.
  • 8张选平,杜玉平,秦国强,覃征.一种动态改变惯性权的自适应粒子群算法[J].西安交通大学学报,2005,39(10):1039-1042. 被引量:138
  • 9Clerc M.The swarm and the queen:Towards a deterministic and adaptive particle swarm optimization[C] //Congress of Evolutionary Computation.Washington:IEEE Service Center,1999:1951-1957.
  • 10张建科,刘三阳,张晓清.飞行时间自适应调整的粒子群算法[J].计算机应用,2006,26(10):2513-2515. 被引量:10

二级参考文献39

  • 1陈炳瑞,冯夏庭.压缩搜索空间与速度范围粒子群优化算法[J].东北大学学报(自然科学版),2005,26(5):488-491. 被引量:20
  • 2陈国初,俞金寿.增强型微粒群优化算法及其在软测量中的应用[J].控制与决策,2005,20(4):377-381. 被引量:31
  • 3梁科,夏定纯.对粒子群优化算法的几种改进方法[J].武汉科技学院学报,2006,19(7):44-47. 被引量:7
  • 4Shi Y, Eberhart R C. A modified particle swarm optimizer [A]. Proc IEEE Int Conf on Evolutionary Computation[C]. Anchorage, 1998: 69-73.
  • 5Thompson M L, Kramer M A. Modeling chemical process using prior knowledge and neural networks[J]. AIChE J,1994,40(8): 1328-1340.
  • 6Kennedy J, Eberhart R C. Particle swarm optimization[A]. Proc IEEE Int Conf on Neural Networks[C]. Perth, 1995: 1942-1948.
  • 7Eberhart R C, Kennedy J. A new optimizer using particle swarm theory[A]. Proc the Sixth Int Symp on Micro Machine and Human Science[C]. Nagoya, 1995: 39-43.
  • 8Eberhart R C, Shi Y. Particle swarm optimization: Developments, applications and resources[A]. Proc 2001 Congress on Evolutionary Computation [C]. Seoul, 2001: 81-86.
  • 9Parsopoulos K E, Vrahatis M N. Recent approaches to global optimization problems through particle swarm optimization[J]. Natural Computing, 2002: 235-306.
  • 10Claudia O Ourique, Evaristo C Biscaia, Jr Jose Carlos Pinto. The use of particle swarm optimization for dynamical analysis in chemical processes[J]. Computers and Chemical Engineering,2002,26: 1783-1793.

共引文献180

同被引文献16

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部