期刊文献+

混沌离散粒子群优化的高光谱影像端元提取算法 被引量:2

Endmember Extraction Algorithm on Hyperspectral Remote Sensing Images Based on Chaotic Discrete Particle Swarm Optimization
下载PDF
导出
摘要 针对离散粒子群优化算法在进行端元搜索时易陷入局部最优值等缺陷,提出了混沌机制扰动下的离散粒子群优化的端元提取算法(CDPSO-EE)。研究了混沌理论特有的随机性、遍历性以及对初始值敏感性等特点,将混沌理论引入到DPSO端元提取算法的初始化阶段,优化了初始种群质量;将混沌变量附加到粒子自身历史最优位置获得扰动新位置,对比混沌扰动前后粒子所在位置的适应度函数值,选择最优位置为粒子新的位置,让粒子有能力跳出局部最优值。结果表明CDPSO-EE在高光谱影像端元提取方面具有更好的端元提取质量。 For the discrete particle swarm optimization easily to lost in local optimum during endmember search, the endmember extraction based on chaotic discrete particle swarm optimization( CDPSO-EE) was proposed. The properties of randomness, ergodicity and sensitivity to initial value of chaos theory was researched. The chaos theory was introduced into initialization phase of the DPSO endmember extraction algorithm to optimize the quality of the initial population, then the chaotic variables was attached to the personal best positions of particles, then obtained the new disturbed position. Comparison the fitness function value of particles position before and after chaotic disturbance, the optimal position was chosen for new particles, so that the particles had the ability to escape from local optimum. Finally, the result showed that CDPSO-EE has a better quality in hyperspectral image endmember extraction.
出处 《测绘科学技术学报》 CSCD 北大核心 2014年第2期148-152,156,共6页 Journal of Geomatics Science and Technology
基金 国家自然科学基金项目(41271436) 国家863计划项目(2012AA12A308) 中央高校基本科研业务费专项(2009QD02)
关键词 粒子群优化 混沌理论 混合像元 端元提取 高光谱遥感 particle swarm optimization chaos theory mixed pixel endmember extraction hyperspectral remote sensing
  • 相关文献

参考文献16

  • 1KESHAVA N,MUSTARD J F.Spectral Unmixing[J].IEEE Signal Processing Magazine,2002,19(1):44-57.
  • 2BOARDMAN J W,KRUSE F A,GREEN R O.Mapping Target Signatures via Partial Unmixing of AVIRIS Data[C]∥Fifth JPL Airborne Earth Science Workshop.Pasadena,USA,1995:23-26.
  • 3WINTER M E.N-FINDR:An Algorithm for Fast Autonomous Spectral Endmember Determination in Hyperspectral Data[C]∥International Society for Optical Engineering,International Symposium on Optical Science,Engineering,and Instrumentation.Denver,USA,1999,3753:266-275.
  • 4BAJORSKI P.Simplex Projection Methods for Selection of Endmembers in Hyperspectral Imagery[C]∥IEEE International Geoscience and Remote Sensing Symposium.Anchorage,USA,2004,5:3207-3210.
  • 5NEVILLE R A,STAENZ K,SZEREDI T.Automatic Endmember Extraction from Hyperspectral Data for Mineral Exploration[C]∥21st Canadian Symposium on Remote Sensing.Ottawa,Canada,1999:21-24.
  • 6OMRAN M,ENGELBRECHT A P,SALMAN A.Particle Swarm Optimization Method for Image Clustering[J].International Journal of Pattern Recognition and Artificial Intelligence,2005,19(3):297-321.
  • 7张兵,孙旭,高连如,杨丽娜.一种基于离散粒子群优化算法的高光谱图像端元提取方法[J].光谱学与光谱分析,2011,31(9):2455-2461. 被引量:20
  • 8KENNEDY J,EBERHART R.Particle Swarm Optimization[C]∥Proceedings of the IEEE International Conference on Neural Networks.Perth,Western Australia,1995,4:1942-1948.
  • 9郭文忠,陈国龙.离散粒子群优化算法及其应用[M].北京:清华大学出版社,2012.
  • 10李林宜,李德仁.基于粒子群优化的模糊特征自适应选择方法[J].测绘科学技术学报,2011,28(2):121-124. 被引量:3

二级参考文献34

  • 1赵春霞,钱乐祥.遥感影像监督分类与非监督分类的比较[J].河南大学学报(自然科学版),2004,34(3):90-93. 被引量:88
  • 2冯兴杰,黄亚楼.带约束条件的聚类算法研究[J].计算机工程与应用,2005,41(7):12-14. 被引量:12
  • 3Haykin S,Li X B.Detection of Signals in Chaos[J].IEEE Porceedings,1995,83(1):95-122.
  • 4Jaggard D J,Sun X.Scattering from Fractally Corrugated Surfaces[J].Optical Society of America Journal,1990,7(6):1 131-1 139.
  • 5Tannous C,Davies R,Angus A.Strange Attractors in Multipath Propagation[J].IEEE Trans on Comm,1991,39(5):629-631.
  • 6Eyceoz T,Duel-Hallen A,Hallen H.Prediction of Fast Fading Parameters by Resolving the Interference pattern[A].Proceedings of the 31st ASILOMAR Conference on Signals,Systems,and Computers[C].Pacific Grove:IEEE,1997.167-171.
  • 7Ekman T,Kubin C.Nonlinear Prediction of Mobile Radio Channels:Measurement and MARS Model Designs[A].Proc Int Conf Acoust Speech Sign Process[C].Phoenix:IEEE,1999.2 667-2 670.
  • 8Takens F.Detecting Strange Attractors in Fluid Turbulence[M].Berlin:Springer-Verlag,1981.
  • 9Jakes W C.Microwave Mobile Communications[M].Piscataway:IEEE Press,1974.
  • 10Kurek J E,Zaremba M B.Iterative Learning Control Synthesis Based on 2D System Theory[J].IEEE Automatic Control,1993,38(1):121-125.

共引文献56

同被引文献8

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部