摘要
研究了用Rosenbrock方法求解多延时微分方程组数值解的稳定性.Rosenbrock方法是求解刚性常微分方程的有效方法,基于Lagrange插值,借助于理论解渐近稳定的条件,对于线型方程组模型,分析了Rosenbrock方法的GPmL-稳定性,并证明了用Rosenbrock方法数值求解多延时微分方程组是GPmL-稳定的当且仅当它是L-稳定的.
This paper deals with the stability analysis of the Rosenbrock methods for the numerical solutions of the systems of differential equations with many delays. The GPmL-stability behavior of the Rosenbrock methods is analyzed for the solutions of linear test equations. We show that the Rosenbrock methods are GPmL-stable if and only if they are L-stable.
出处
《上海师范大学学报(自然科学版)》
2014年第2期111-116,共6页
Journal of Shanghai Normal University(Natural Sciences)