期刊文献+

Markov随机游走和高斯混合模型相结合的运动目标检测算法 被引量:10

Moving target detection algorithm combined with Markov random walk and Gauss mixed model
下载PDF
导出
摘要 针对高斯混合算法对每一像素与它前后帧的像素相关联,并未考虑与相邻像素之间的关联,无法准确地捕捉到运动物体轮廓的情况,提出一种基于混合高斯模型和Markov随机游走的运动目标检测算法。利用混合高斯模型计算像素之间的颜色信息,采用Markov随机游走提取图像的边缘信息,并与提取的运动初始目标进行与计算,同时利用高斯混合模型更新背景信息。结果表明,本方法比传统的混合高斯方法具有较高的分割精度,很好的解决了混合高斯算法边缘模糊的问题,探测率也大大的提高了。 According to the pixel of Gauss mixed algorithm is associated with its before and after the current frame, did not consider the relevance among neighboring pixels, cannot accurately capture the moving object contour, a moving target detection method based on mixed Gauss model and Markov random walk is proposed in this paper. It uses mixed Gauss model to calculate the color information between the pixels, and uses Markov random walk to extract edge information of the image to calculate with the initial moving target which is extracted. At the same time, using mixed Gauss model updates the background information. The results show that this method has higher segmentation accuracy than conventional mixed Gauss model,it is a good solution to the mixed Gauss algorithm which has edge blurring problem, the detection rate is greatly improved.
出处 《电子测量与仪器学报》 CSCD 2014年第5期533-537,共5页 Journal of Electronic Measurement and Instrumentation
关键词 运动目标检测 Markov随机游走 混合高斯模型 moving target detection Markov random walk mixed Gauss model
  • 相关文献

参考文献15

二级参考文献154

共引文献198

同被引文献124

  • 1高贵,计科峰,匡纲要,李德仁.高分辨率SAR图像目标峰值提取及峰值稳定性分析[J].电子与信息学报,2005,27(4):561-565. 被引量:7
  • 2赵凤,范九伦.二维熵取小法和模糊熵相结合的图像分割方法[J].计算机工程与设计,2007,28(12):2883-2885. 被引量:2
  • 3郭琦,孔斌,郑飞.图像分割质量评价的综述[c]∥中国仪器仪表学会第九届青年学术会议论文集,北京:[S.n.],2007:613-618.
  • 4YAZDI M B, KHALILZADEH M M, FOROUGHIPOUR M. Fuzzy c-means clustering method based on prior knowledge for brain MR image segmentation [ C ]. 2014 21th Iranian Conference on Biomedical Engineering (ICBME) , 2014:235-240.
  • 5WANG K B, XIE H M. Texture image segmentation using fully global minimization active contour model [ C ]. 2011 In- ternational Conference on Multimedia Technology (ICMT), 2011:2649-2653.
  • 6HANBAY K, TALU M F, KARCI A. Segmentation of color texture images with artificial bee colony algorithm and wavelet transform [ C ]. 2012 20th Signal Processing and Communications Applications Conference (SIU). 2012 : 1-4.
  • 7SIMMONS J, PRZYBYLA C, BRICKER S, et al. Physics of MRF regularization for segmentation of materials micro- structure images[ C ]. 2014 IEEE International Conference on Image Processing( ICIP), 2014:4882-4886.
  • 8YOUSIF O, BAN Y. Improving sar-based urban change detection by combining map-mrf classifier and nonloeal means similarity weights[ J]. Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7 (10) : 4288- 4300.
  • 9MRIDULA J, KUMAR K, PATRA D. Combining GLCM features and markov random field model for colour texture image[ C]. 2011 International Conference on Devices and Communications (ICDeCom), 2011:1-5.
  • 10UMASELV M, KUMAR S S, ATHITHYA M. Color based urban and agricultural land classification by GL- CM texture features[ C]. IET Chennai 3rd International on Sustainable Energy and Interlligent Systems (SEIS- CON 2012), 2012:1-4.

引证文献10

二级引证文献113

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部