期刊文献+

基于双重卡尔曼滤波器电池荷电状态的估计 被引量:7

States of Charge Estimation of Battery Based on the Dual Kalman Filter
下载PDF
导出
摘要 为了有效估计车用蓄电池的荷电状态(SOC),建立了包含迟滞因素和松弛因素的锂电池的精确模型,以自适应无迹卡尔曼滤波器算法为基础,设计了能够实现模型参数和状态同时在线估计的双重卡尔曼滤波器。通过实验和仿真结果的比较表明:该方法能够有效抑制噪声的干扰,快速修正SOC的误差,取得精确的SOC估计值,同时通过时变参数的估计为判断蓄电池的健康状态提供依据。 In order to estimate battery state-of-charge effectively, an accurate battery model was built which contained the hysteresis effect and relaxation effect. Then, on the basis of adaptive unscented Kalman filter, the dual Kalman filter was designed which could estimate the parameter and state on- line at the same time. Finally, the comparison results between test and simulation show that this method can effectively suppress noise, reduce the SOC estimate error and achieve the precise SOC es- timated value. And, the estimated value of parameter can provide evidence for the judging of state-of- health of battery.
出处 《重庆理工大学学报(自然科学)》 CAS 2014年第6期1-7,共7页 Journal of Chongqing University of Technology:Natural Science
关键词 荷电状态 卡尔曼滤波器 自适应 state of charge Kalman filter adaptive
  • 相关文献

参考文献9

  • 1Zhu C B,Coleman M,Hurley W G. State of charge deter- mination in a lead-acid battery:combined EMF estimation and Ah-balance approach [ C ]//Power Electronics Spe- cialists Conference. [ S. 1. ] ,IEEE ,2004 : 1908 - 1914.
  • 2陈艳,赵明富,兴仁龙,钟连超,崔金林.基于SVM的蓄电池容量智能在线检测技术研究[J].压电与声光,2008,30(3):304-307. 被引量:2
  • 3戴海峰,魏学哲,孙泽昌.基于扩展卡尔曼滤波算法的燃料电池车用锂离子动力电池荷电状态估计[J].机械工程学报,2007,43(2):92-95. 被引量:45
  • 4Plett G. Extended Kalman fihering for battery manage- ment systems of LiPB-based HEV battery packs Partl. Background [ J ]. Journal Of Power Sources, 2004, 134 (2) :252 -261.
  • 5Plett G. Extended Kalman filtering for battery manage- ment systems of LiPB-based HEV battery packs Part2. Modeling and identification [ J ]. Journal Of Power Sources,2004,134(2) :262 - 276.
  • 6夏超英,张术,孙宏涛.基于推广卡尔曼滤波算法的SOC估算策略[J].电源技术,2007,31(5):414-417. 被引量:52
  • 7Sun F, Hu X, Zou Y, et al. Adaptive unscented Kalman filtering for state of charge estimation of a lithiumion bat- tery for electric vehicles [ J ]. Energy, 2011,36 (5) : 3531 - 3540.
  • 8Plett G L. Sigma-point Kalman filtering for battery man- agement systems of LiPB-base HEV battery packs Partl : Introduction and state estimation [ J ]. Journal of power Sources ,2006,161 : 1356 - 1368.
  • 9Plett G L. Sigma-point Kalman filtering for battery man- agement systems of LiPB-base HEV battery packs Part2: Introduction and state estimation [ J ], 2006, 161 : 1356 - 1368.

二级参考文献14

  • 1魏学哲,邹广楠,孙泽昌.燃料电池汽车中电池建模及其参数估计[J].电源技术,2004,28(10):605-608. 被引量:19
  • 2赵明富,陈艳,罗渝微,钟年丙.光纤铅酸蓄电池容量传感器研究[J].压电与声光,2007,29(1):15-18. 被引量:6
  • 3PILLER S,PERRIN M,JOSSEN A.Methods for state-of charge determination and their applications[J].Journal of Power Sources,2001,96(1):113-120.
  • 4PLETT G.Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs,Part2,Modeling and identification[J].Journal of Power Sources,2004,134(2):262-276.
  • 5ZHU C B,COLEMAN M,HURLEY W G.State of charge determination in a lead-acid battery:combined EMF estimation and Ahbalance approach[A].2004 35 th Annual IEEE Power Electronics Specialists Conference[C].Aachen,Germany:Power Electronics Society,2004.1 908-1 914.
  • 6GAO L J,LIU S Y,DOUGAL R A.Dynamic lithium-ion battery model for system simulation[J].IEEE Transactions on Components and Packaging Technologies,2002,25(3):495-505.
  • 7PANG S,FARRELL J,DU J,et al.Battery state-of-charge estimation[A].Proceedings of the American Control Conference[C].Arlington,VA.USA:IEEE Control System,2001.1 644-1 649.
  • 8PLETT G L.Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs,Part 1.Backgrotmd[J].Power Sources,2004,134(2):252-261.
  • 9PLETT G L.Extended Kalman filtering for battery management systems of LiPB-based HEV bakery packs,Part 2.Modeling and identification[J].Power Sources,2004,134(2):262-276.
  • 10PLETT G L.Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs Part 3.State and parameter estimation[J].Power Sources,2004,134(2):277-292.

共引文献93

同被引文献55

  • 1邱纲,陈勇.电动汽车用动力电池组SOC的神经网络估计[J].辽宁工程技术大学学报(自然科学版),2006,25(2):230-233. 被引量:6
  • 2夏超英,张术,孙宏涛.基于推广卡尔曼滤波算法的SOC估算策略[J].电源技术,2007,31(5):414-417. 被引量:52
  • 3THOMASM.CORERJ,THOMAASA.信息论基础[M].北京:机械工业出版社,2008:2-3.
  • 4李德伟,陈实,吴锋,杨凯,胡道中.基于神经网络的动力电池荷电状态的预测[J].计算机应用与软件,2007,24(9):102-104. 被引量:4
  • 5MOWBRAY A H. How extensive a payroll is necessary to give a dependable pure premium [ J ]. Proceedings of the Casualty Actuarial Society, 1914( 1 ) :24 - 30.
  • 6WHITNEY A. The theory of experience rating [J]. Proceedings of the Casualty Actuarial Society,1918(4) :274 -292.
  • 7BAGNOLI M, BERGSTROM T. Log- concave probability and its applications [ J ]. Economic Theory,2005,26:445 -469.
  • 8HACHEMEISTER C A. Credibility for regression models with application to trend [ C ]//Credibility, theory and applications, Proceedings of the berkeley Actuarial Research Conference on Credibility. USA:[ s. n. ], 1975:129 -163.
  • 9ZEHNWIRTH B. A generalization of the Kalman filter for models with state-dependent observation variance [ J ]. Journal of the American Statistical Association, 1988,83 (401) : 164 - 167.
  • 10MEHRA R K. Credibility theory and Kalman filtering with extensions [ C ]//Decision and Control including the 15th Symposium on Adaptive Processes, 1976 IEEE Conference. [ S. 1. ] : IEEE, 1976:183 - 185.

引证文献7

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部