期刊文献+

高阶异构数据模糊联合聚类算法 被引量:8

Fuzzy co-clustering algorithm for high-order heterogeneous data
下载PDF
导出
摘要 为了更有效地分析聚簇重叠部分高阶异构数据的聚簇结果,提出了一种高阶异构数据模糊联合聚类(HFCC)算法,该算法最小化每个特征空间中对象与聚簇中心的加权距离。推导出对象隶属度和特征权重的迭代更新公式,设计出聚类过程的迭代算法,并且从理论上证明了该迭代算法的收敛性。另外,通过泛化XB指标,提出适用于评估高阶异构数据聚类质量的指标GXB,用于判断聚簇数目。实验表明,HFCC算法能够有效探测数据内部隐藏的重叠聚簇结构,并且HFCC算法聚类效果明显优于5种有代表性的硬划分算法,此外GXB指标能够有效判定高阶异构数据的聚簇数目。 In order to analyze the clustering results of high-order heterogeneous data at the overlaps of different clusters more efficiently, a fuzzy co-clustering algorithm was developed for high-order heterogeneous data (HFCC). HFCC algo- rithm minimized distances between objects and centers of clusters in each feature space. The update rules for fuzzy memberships of objects and weights of features were derived, and then an iterative algorithm was designed for the clus- tering process. Additionally, convergence of iterative algorithm was proved. In order to estimate the number of clusters, GAB validity index was proposed by generalizing the AB validity index, which could measure the quality of high-order clustering results. Finally, experimental results show that HFCC can efficiently mine the overlapped clusters and the qualities of clustering results of HFCC are superior five classical hard high-order co-clustering algorithms. Additionally, GAB validity index can efficiently estimate the number of high-order clusters.
出处 《通信学报》 EI CSCD 北大核心 2014年第6期15-24,共10页 Journal on Communications
基金 国家自然科学基金资助项目(71272216 60903080 60093009) 国家科技支撑计划基金资助项目(2009BAH42B02 2012BAH08B02) 博士后科学基金资助项目(2012M510480) 中央高校基本科研业务费专项基金资助项目(HEUCFZ1212 HEUCFT1208)~~
关键词 高阶异构数据 联合聚类 模糊聚类 high-order heterogeneous data co-clustering fuzzy clustering
  • 相关文献

参考文献18

  • 1LONG B,WU X Y,ZHANG Z F,et al.Unsupervised learning on k-partite graphs[A].Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining[C].Philadelphia,USA,2006.317-326.
  • 2DINO I,ROBARDET C,RUGGERO G,et al.Parameter-less co-clustering for star-structured heterogeneous data[J].Data Mining and Knowledge Discovery,2013,26(2):217-254.
  • 3GAO B,LIU T Y,ZHENG X,et al.Consistent bipartite graph co-partitioning for star-structured high-order heterogeneous data co-clustering[A].Proceedings of the 1 lth ACM SIGKDD International Conference on Knowledge Discovery in Data Mining[C].Chicago,USA,2005.41-50.
  • 4GAO B,LIU T Y,MAW Y.Star-structured high-order heterogenous data co-clustering based on consistent information theory[A].Proceedings of the 6th IEEE International Conference on Data Mining[C].HongKong,China,2006.880-884.
  • 5WANG H,NIE F P,HUANG H,et al.Nonnegative matrix tri-factorization based high-order co-clustering and its fast implementation[A].Proceedings of 11th IEEE International Conference on Data Mining[C].Arlington,USA,2011.174-183.
  • 6SHAO J,YIN W T,MA S,et al.Topic discovery of Web video using star-structured k-partite graph[A].Proceedings of the International Conference on Multimedia[C].Firenze,Italy,2010.915-918.
  • 7GAO B,LIU T Y,FENG G,et al.Hierarchical taxonomy preparation for text categorization using consistent bipartite spectral graph co-partitioning[J].IEEE Transactions on Knowledge and Data Engineering,2005,17(9):1263-1273.
  • 8GAO B,LIU T Y,QIN T,et al.Web image clustering by consistent utilization of visual features and surrounding texts[A].Proceedings of the 13th annual ACM International Conference on Multimedia[C].Singapore,2005.112-121.
  • 9REGE M,DONG M,HUA J.Graph theoretical framework for simultaneously integrating visual and textual features for efficient Web image clustering[A].Proceedings of the 17th International Conference on World Wide Web[C].Beijing,China,2008.317-326.
  • 10CHIARAVALLOTI A D,GRECO G,GUZZO A,et al.An information-theoretic framework for high-order co-clustering of heterogeneous objects[A].Proceedings of the 17th European Conference on Machine Learning[C].Berlin,Germany,2006.598-605.

同被引文献91

  • 1韦素云,肖静静,业宁.基于联合聚类平滑的协同过滤算法[J].计算机研究与发展,2013,50(S2):163-169. 被引量:12
  • 2王鹏,杨士强,刘志强.信息论联合聚类算法及其在视频镜头聚类中的应用[J].计算机学报,2005,28(10):1692-1699. 被引量:6
  • 31EC. Draft 1EC 61970: Energy Management System Application Program Interface ( EMS-API )-Part 301 : Common Information Model(CIM) Basel S].
  • 4WU J Y,PING L D. Cloud Storage as the Infrastructure of Cloud Computing [ C ]//2010 International Conference on Intelligent Comoutin~ and Cognitive Informatics. 2010.
  • 5白红伟.基于云计算的电力设备状态监测数据的存储与查询[D].北京:华北电力大学,2011.
  • 6郝志宇,翟健宏,云晓春,张宏莉.动态路由模拟策略研究[J].通信学报,2007,28(12):19-24. 被引量:2
  • 7Roy Want, Andy Hopper, Veronica et al . The Active Badge Location System[J].Information System, 1992, 1(10) : 91-102.
  • 8Yinjie Chen, Zhonli Liu, Xinwen Fu . Theory Underlying Measurement of AOA with a Rotationg Directional Antenna[J]. INFOCOM, 2013, 2490(2498) : 14-19.
  • 9Savarese, Rabay, Langendoen K . Robust positioning algorithms for distributed ad-hoc wireless sensor networks [C]//Ellis CS, ed. Proc. of the USENIX Technical Annual Conf. Monterey: USENIX Press, 2002, (2) : 450-654.
  • 10Anil A Agashe, Dr. (Srnt.) R S Patil . An optimum DV-Hop Localization Algorithm for variety of topologies inWireless Sensor Networks[J].International Journal on Computer Science and Engineering (IJCSE), 2012, (4) : 956-960.

引证文献8

二级引证文献68

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部