摘要
本文采用正态函数逼近分析的方法,讨论了活性分布宽度对球形催化剂有效因子的影响。对于具有幂指数型动力学的放热反应,活性组分集中在最佳位置处的无限薄层上可得到最大有效因子η_(max),然而,分布宽度的略微增加会使有效因子迅速降至最小有效因子η_(max)。随着β值的增加,这种现象更加显著。若活性组分以一定宽度存在于颗粒内部,那么,分布位置必须向的内侧偏移一定距离才会使催化剂有最佳有效因子。因此,为使真实催化剂具有最佳有效因子,就必须在附近对分布宽度和位置再次进行优化。
Normal distribution function analysis is used to describe the nonuniform activity distribution in catalyst pellets and the effect of the activity distirbution width of a real catalyst on the effectiveness factor is investigated.For the exothermic reaction(β>0),the effectiveness factor is maximized by concentrating all the active component at a specific position in the pellet.However,the effectiveness factor will sharply go down to a minimum value once the active component is located about the position with a certain width,and this behavior becomes significant with the increase of β value.In this case,the distribution position of the active component should be moved toward a distance at the inside of the specific postion in order to make the catalyst to show best activity. Therefore,for a real catalyst the re-optimization of the distribution width and position must be performed about the specific position.
出处
《化学反应工程与工艺》
CAS
CSCD
北大核心
1991年第4期386-391,共6页
Chemical Reaction Engineering and Technology
基金
中国科学院山西煤炭化学研究所所长基金
关键词
催化剂
活性
活性分布
正态函数
Activity distribution
Normal function
Catalyst
Effectiveness factor
Distribution width
Optimal effectiveness factor