期刊文献+

基于径向基函数神经网络的开关磁阻电机建模 被引量:28

Modeling of Switched Reluctance Motors Based on Radial Basis Function Neural Networks
下载PDF
导出
摘要 基于径向基函数神经网络的局部逼近理论 ,利用高斯基函数 ,在分析测量数据和开关磁阻电机非线性磁特性的基础上 ,建立了开关磁阻电机的模型。通过与样机实测数据比较 ,验证了模型的有效性。与传统的局部线性化方法及BP神经网络比较 ,本文所建模型有更好的泛化能力和更快的速度 ,比较准确地反映了开关磁阻电机的磁特性 。 The paper analysis nonlinear characteristics of swi tc hed reluctance motors (SRM). The modeling of SRM based on radial basis function (RBF) neural networks is designed with Gaussian function. Experimental results v alidates the proposed model. The simulated results show that the proposed model has better capability of generalization and more quickly velocity, and represent more correctly the characteristics of SRM compared with traditional method of l ocal linearization or BP networks, which is critical to real-time control for S RM.
出处 《电工技术学报》 EI CSCD 北大核心 2001年第4期7-11,共5页 Transactions of China Electrotechnical Society
基金 浙江省重点科技计划项目 (0 0 110 612 7)
关键词 开关磁阻电机 径向基函数神经网络 建模 Switched reluctance motors Radial basis function neu ral network Modeling
  • 相关文献

参考文献2

  • 1Sahoo N C,Electric Machines and Power Systems,1999年,27卷,181页
  • 2孙增圻,智能控制理论与技术,1997年

同被引文献206

引证文献28

二级引证文献159

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部