摘要
设Fq是一个含有q个元素的有限域.用Г表示Fq上2v维辛空间的对偶极图.对于Г的任何顶点P,Г的所有次成分Гi(P)(1≤i≤v)的结构被研究,并且以下结果被证明:Гi(P)同构于[Vi]q·Sym(i,q),其中Sym(i,q)是Fq上i×i对称矩阵图。进一步,Fq上2v+δ维伪辛空间的对偶极图Aδ的相应问题也被解决.
Let Fq be a finite field with q elements. Denote by Г the dual polar graph of 2v-dimensional symplectic space over Fq. For any vertex PofГ, the structure of all subconstituents Fi(P) (1 ≤ i≤v) of Г are studied, and it is proved that Гi(P) is isomorphic to [vi]q ·Sym (i, q), where Sym (i, q) is the graph of i × i symmetric matrices over Fq. Moreover, the corresponding problem of the dual polar graph Aδ of (2v+δ)-dimensional pseudo-symplectic space over Fq are also solved.
出处
《应用数学学报》
CSCD
北大核心
2001年第3期433-440,共8页
Acta Mathematicae Applicatae Sinica
基金
国家自然科学基金(19571024号)资助项目.
关键词
对偶极图
距离正则图
次成分
辛几何
伪辛几何
有限域
Dual polar graph, distance-regular graph, subconstituent, symplectic geometry, pseudo-symplectic geometry