摘要
开关磁阻电动机驱动系统是一个时变、非线性系统 ,若采用通常的建模方法 ,无法获得精确的数学模型。给出了开关磁阻电机变结构模糊神经网络非线性模型 ,基于Takagi Sugeno模糊神经网络 ,提出可变结构的变步长学习算法。仿真结果表明此法比BP神经网络具有更高的精度和更快的收敛速度。
Switched Reluctance Motors(SRM) are almost always operated within the saturation region for a very large operation region.This yields very strong nonlinearity,which makes it very difficult to derive a comprehensive mathematical model for the behavior of the machine.This paper presents the variable structure fuzzy neural network model of SRM.Based on the Takagi Sugeno fuzzy neural networks a variable structure and step learning arithmetic was presented.Simulation results show that this method is more precise and less time consuming for convergence than BP neural network model.
出处
《电工技术学报》
EI
CSCD
北大核心
2001年第6期1-6,共6页
Transactions of China Electrotechnical Society
基金
浙江省科委重点资助项目 ( 0 0 110 6 12 7)