期刊文献+

范例推理中的知识发现技术 被引量:8

Knowledge Discovery Techniques in Case-Based Reasoning
下载PDF
导出
摘要 范例推理中有许多相关的知识 ,相应地有知识获取过程 ,其中也存在一定程度的知识获取瓶颈问题 .本文着重探讨在范例推理系统中引入一系列可以使用的知识发现技术 ,以期提高范例推理系统的知识获取的自动化程度 ;本文针对提出的两类算法 。 In case based system,there are many kinds of knowledge, such as case base ,adaptation knowledge base ,indexing model, similarity assessing criteria,etc. There exists also bottleneck problem about these knowledge acquisition. The use of data mining may automate the acquisition of the knowledge and heighten the whole competence of the intelligent system. This paper discusses emphatically data mining techniques which could be used in CBR, and puts forward one algorithm of case base acquisition from historical data base and one algorithm of adaptation knowledge acquisition automatically . The experimental result shows that these methods have strengthened the performance of the system.
出处 《小型微型计算机系统》 CSCD 北大核心 2002年第2期159-162,共4页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目 (60 0 75 0 15 )资助 国家"8 63"计划项目资助
关键词 范例推理 知识发现 范例库 专家系统 人工智能 机器学习 数据库 数据挖掘 case based reasoning knowledge discovery case base adaptation knowledge base data base
  • 引文网络
  • 相关文献

参考文献14

  • 1[1]Hiroshi Tsukimoto.Extracting rules from neural networks[J].IEEE Transactions on Neural Networks,2000,11(2):377~389
  • 2[2]Jagielska,I.,Matthews,C.Whitfort,T.An investigation into the application of neural networks,fuzzy logic,genetic algorithms ,and rough sets to automated knowledge acquisition for classification problems[J].Neurocomputing,1999,24,37~54
  • 3[3]M.E.Yahia,R.Mahmod.N.Sulaiman.et al.,Rough neural expert systems[J].Expert systems with applications,2000,18,87~99
  • 4[4]M.Mejia-Lavalle and G.Rodriguez-Ortiz.Obtaining expert system rules.using data mining tools from a power generation database[J].Expert systems with applications,1998,14,37~42
  • 5[5]A.Kraslawski,W.Pedrycz and L.Nystrom,Fuzzy neural network as instance generator for case-based reasoning system[J].Neural Computing & Applications,1999,Vol.8,106~113
  • 6[6]Mario Lenz et al.Case-based reasoning :from foundations to applications[M].Berlin,Springer,1998
  • 7[7]David Leake,Andrew Kinley.and Darid Wilson.Learning to integrate multiple knowledge sources for case-based reasoning In[J].Proceedings of the Fifteenth International Joint Conference on Artificial Intelligence,Nagoya,Japan,1997,246~251
  • 8[8]R.J.Bayardo,JR.,R.Agrawal,D.Gunoplos.Constraint-based rule mining in large ,dense databases[J].Data Mining and Knowledge Discovery ,2000,4,217~240
  • 9[9]D.Skalak,Prototype and features selection by sampling and random mutation hill-climbing algorithm[C].in Proc.11th Int.Machine Learning Conf.,1994,293~301
  • 10[10]F.Azuaje,W.Dubitzky N.Black,et al.Discovering relevance knowledge in data:a growing cell structure approach[J].IEEE Transactions on systems,man ,and cybernetics,june,2000(3):448~460

同被引文献37

引证文献8

二级引证文献51

;
使用帮助 返回顶部