期刊文献+

基于相关熵和流形学习的多标签特征选择算法 被引量:4

Multi-label feature selection algorithm based on correntropy and manifold learning
原文传递
导出
摘要 从相关熵的角度出发,提出一种基于相关熵和特征流形学习的稀疏正则化方法,用于解决多标签特征选择问题。在相关熵定义的基础上给出多标签特征选择的回归模型;结合l_(2,1)范数的性质和特征流形学习的定义建立基于相关熵和特征流形学习的稀疏正则化多标签特征选择模型及算法;证明该算法的收敛性并且通过试验验证所给算法的有效性。 A sparse regularization method based on correntropy and feature manifold learning was proposed to solve the problem of multi-label feature selection.A regression model of multi-label feature selection was presented by means of correntropy.The sparse regularized multi-label feature selection model,combing l2,1 norm and feature manifold learning,was established.An iterative algorithm was proposed for the above model.The convergence of the algorithm was proved and the effectiveness of the given algorithm was verified through experiments.
作者 陈红 杨小飞 万青 马盈仓 CHEN Hong;YANG Xiaofei;WAN Qing;MA Yingcang(School of Science,Xi'an Polytechnic University,Xi'an 710048,Shaanxi,China)
出处 《山东大学学报(工学版)》 CAS 北大核心 2018年第6期27-36,共10页 Journal of Shandong University(Engineering Science)
基金 国家自然科学基金资助项目(11501435) 中国纺织工业联合会科技指导性项目(2016073) 陕西省教育厅科研计划项目资助(18JK0360)
关键词 相关熵 稀疏正则化 特征流形学习 多标签 特征选择 correntropy sparse regularization feature manifold learning multi label feature selection
  • 相关文献

参考文献2

二级参考文献27

  • 1苟博,黄贤武.支持向量机多类分类方法[J].数据采集与处理,2006,21(3):334-339. 被引量:63
  • 2杨龙琪. 网络安全态势感知关键技术研究[D]. 南京: 中国人民解放军理工大学, 2015.
  • 3MOORE A, ZUEV D, CROGAN M. Discriminators for use in flow-based classification[R]. UK: Computer Science Department, Queen Mary University of London, 2005.
  • 4LI Wei, MOORE A. A machine learning approach for efficient traffic classification[C] //Proceedings of 15th International Symposium on MASCOTS'07. Istanbul, Turkey: IEEE Press, 2007:310-317.
  • 5MOORE A, ZUEV D. Internet traffic classification using bayesian analysis techniques[J]. Acm Sigmetrics Performance Evaluation Review, 2005, 33(1):50-60.
  • 6KIM H, CLAFFY K, FOMENKOV M, et al. Internet traffic classification demystified: myths, caveats, and the best practices[C] //Proceedings of the 2008 ACM CoNEXT Conference. Madrid, Spain: ACM Press, 2008:1-12.
  • 7NGUYEN T, ARMITAGE G. A survey of techniques for internet traffic classification using machine learning[J]. Communications Surveys & Tutorials, 2008, 10(4):56-76.
  • 8ZHAO Zheng, MORSTATTER F, SHARMA S, et al. Advancing feature selection research[R]. USA:School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, 2010.
  • 9KATAKIS I, TSOUMAKAS G, VLAHAVAS I. On the utility of incremental feature selection for the classification of textual data streams[C] // Proceedings of the 10th Panhellenic Conference on Informatics. Volos, Greece: Springer Berlin Heidelberg Press, 2005:338-348.
  • 10WENERSTROM B, GIRAUD-CARRIER C. Temporal data mining in dynamic feature spaces[C] // Proceedings of the Sixth ICDM'06. Hong Kong, China: IEEE Computer Society Press, 2006:1141-1145.

共引文献6

同被引文献40

引证文献4

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部