摘要
从相关熵的角度出发,提出一种基于相关熵和特征流形学习的稀疏正则化方法,用于解决多标签特征选择问题。在相关熵定义的基础上给出多标签特征选择的回归模型;结合l_(2,1)范数的性质和特征流形学习的定义建立基于相关熵和特征流形学习的稀疏正则化多标签特征选择模型及算法;证明该算法的收敛性并且通过试验验证所给算法的有效性。
A sparse regularization method based on correntropy and feature manifold learning was proposed to solve the problem of multi-label feature selection.A regression model of multi-label feature selection was presented by means of correntropy.The sparse regularized multi-label feature selection model,combing l2,1 norm and feature manifold learning,was established.An iterative algorithm was proposed for the above model.The convergence of the algorithm was proved and the effectiveness of the given algorithm was verified through experiments.
作者
陈红
杨小飞
万青
马盈仓
CHEN Hong;YANG Xiaofei;WAN Qing;MA Yingcang(School of Science,Xi'an Polytechnic University,Xi'an 710048,Shaanxi,China)
出处
《山东大学学报(工学版)》
CAS
北大核心
2018年第6期27-36,共10页
Journal of Shandong University(Engineering Science)
基金
国家自然科学基金资助项目(11501435)
中国纺织工业联合会科技指导性项目(2016073)
陕西省教育厅科研计划项目资助(18JK0360)
关键词
相关熵
稀疏正则化
特征流形学习
多标签
特征选择
correntropy
sparse regularization
feature manifold learning
multi label
feature selection