摘要
本文提出一种针对纵向数据回归模型下的均值和协方差矩阵同时进行的有效稳健估计.基于对协方差矩阵的Cholesky分解和对模型的改写,我们提出一个加权最小二乘估计,其中权重是通过广义经验似然方法估计出来的.所提估计的有效性得益于经验似然方法的优势,稳健性则是通过限制残差平方和的上界来达到.模拟研究表明,和已有的针对纵向数据的稳健估计相比,所提估计具有更高的效率和可比的稳健性.最后,我们把所提估计方法用来分析一组实际数据.
In this article,we develop efficient robust method for estimation of mean and covariance simultaneously for longitudinal data in regression model.Based on Cholesky decomposition for the covariance matrix and rewriting the regression model,we propose a weighted least square estimator,in which the weights are estimated under generalized empirical likelihood framework.The proposed estimator obtains high efficiency from the close connection to empirical likelihood method,and achieves robustness by bounding the weighted sum of squared residuals.Simulation study shows that,compared to existing robust estimation methods for longitudinal data,the proposed estimator has relatively high efficiency and comparable robustness.In the end,the proposed method is used to analyse a real data set.
作者
樊亚莉
徐孝琳
FAN Yali;XU Xiaolin(College of Science,University of Shanghai for Science and Technology,Shanghai,200093,China)
出处
《应用概率统计》
CSCD
北大核心
2018年第6期598-612,共15页
Chinese Journal of Applied Probability and Statistics
基金
supported by the National Natural Science Foundation of China(Grant No.11401383)
关键词
有效估计
广义经验似然
稳健性
efficient estimation
generalized empirical likelihood
robust