期刊文献+

人工智能技术在云计算数据中心能量管理中的应用与展望 被引量:37

Application and Prospect of Artificial Intelligence Technology in Energy Management and Optimization for Cloud Computing Data Center
下载PDF
导出
摘要 云计算数据中心是重要的电力用户,其消耗电量随着互联网发展和国家数字化建设快速增加,对数据中心进行能量管理和优化是绿色经济必然要求。该文主要探讨人工智能技术在云计算数据中心能量管理和优化中的应用,介绍了深度学习、深度强化学习和知识图谱等新一代人工智能研究热点,提出了一个跨层的数据中心能耗感知和精确能量管理框架,梳理比较了机房、设备、云计算平台、业务系统和数据中心5个层面的能量管理和优化技术,总结分析了当前存在的不足和挑战,展望了未来新一代人工智能技术在云计算数据中心研究和应用趋势。 Cloud computing data center is the important electricity user. Its power consumption increases rapidly with the development of Internet and national digital construction. Energy management and optimization of data center is a necessary for green economy. This paper mainly discussed the application of artificial intelligence technology in the energy management and optimization for cloud computing data center. The paper introduced research hotspots of new artificial intelligence, such as deep learning, deep reinforcement learning, and knowledge graph, proposed a framework of cross layer data center energy aware and accurate energy management, and compared energy management and optimization technologies at five levels of computer room, equipment, cloud computing platform, business system, and data center. Finally, the paper summarized and analyzed the existing deficiencies and challenges, and discussed the future trends of research and application of new artificial intelligence technology in cloud computing data center energy management.
作者 闫龙川 白东霞 刘万涛 刘殷 李莉敏 YAN Longchuan;BAI Dongxia;LIU Wantao;LIU Yin;LI Limin(Institute of Information Engineering,Chinese Academy of Sciences,Haidian District,Beijing 100093,China;State Grid Information &Telecommunication Branch,Xicheng District,Beijing 100761,China;School of Cyber Security,University of Chinese Academy of Sciences,Haidian District,Beijing 100049,China;Beijing Guoxin Hengda Smart City Technology Development Co.,Ltd.,Daxing District,Beijing 100176,China)
出处 《中国电机工程学报》 EI CSCD 北大核心 2019年第1期31-42,共12页 Proceedings of the CSEE
基金 国家重点研发计划项目(2017YFB1010001)~~
关键词 人工智能 深度学习 深度强化学习 云计算 数据中心 能量管理 artificial intelligence deep learning deep reinforcement learning cloud computing data center energy management
  • 相关文献

参考文献7

二级参考文献125

  • 1章坚武,张季姬.无线传感器节点低功耗的研究[J].传感技术学报,2007,20(12):2679-2682. 被引量:13
  • 2宋丽娜,戴华东,任怡.基于海量数据存储系统多级存储介质的热点数据区分方法[J].计算机研究与发展,2012,49(S1):6-11. 被引量:7
  • 3孙立峰,李放,钟玉琢,杨士强.基于多视点视频的虚拟会议显示与合成[J].电子学报,2005,33(2):193-196. 被引量:6
  • 4段建东,张保会,周艺,罗四倍,任晋峰,杭乃善,刁桂平.基于暂态量的超高压输电线路故障选相[J].中国电机工程学报,2006,26(3):1-6. 被引量:64
  • 5刘克彬,李芳,刘磊,韩颖.基于核函数中文关系自动抽取系统的实现[J].计算机研究与发展,2007,44(8):1406-1411. 被引量:59
  • 6Yun D, Lee J. Research in green network for future Inter- net. Journal of KIISE, 2010, 28(1): 41-51.
  • 7Andrew L L, Lin M, Wierman A. Optimality, fairness, and robustness in speed sealing designs//Proceedings of the ACM International Conference on Measurement and Modeling of International Computer Systems (SIGMETRICS 2010). New York, USA, 2010:1 -12.
  • 8Rao Lei, Liu Xue, Xie Le. Minimizing electricity cost: Opti- mization of distributed Internet data centers in a multi- electricity-market environment//Proeeedings of the 29th IEEE Conference on Computer Communications (INFOCOM' 10). San Diego, USA, 2010:1-9.
  • 9Garg S, Yeob Chee Shin, Buyya Rajkumar. Environment- conscious scheduling of HPC applications on distributed Cloud-oriented data centers. Journal of Parallel and Distributed Computing, 2011, 71(6): 732-749.
  • 10Zhang Qi, Zhu Quanyan, Boutaba Raouf. Dynamic resource allocation for spot markets in cloud computing environ- ments//Proceedings of the 4th IEEE/ACM International Conference on Utility and Cloud Computing. Victoria, Australia, 2011:178-185.

共引文献1385

同被引文献446

引证文献37

二级引证文献163

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部