期刊文献+

基于内容的图像特征相关性检索方法 被引量:5

Relevance retrieval scheme of image features in content-based image retrieval systems
下载PDF
导出
摘要 针对目前基于内容的图像检索系统在模型优化及通用性设计等方面的局限性 ,以图像单一特征描述和提取方法为基础 ,根据人机交互的相关反馈原理 ,分析图像组合特征归一化权值系数 ,提出一套图像特征相关性检索新方案 ,并在着重对基于内容的图像特征相关性检索算法研究基础上 ,参照国际标准MPEG 7所提供的通用性系统设计规范 ,对新方案下的图像检索通用模型进行概念化设计 ,为解决基于内容的图像检索技术在Internet上实用化的瓶颈问题 ,提供一条新的思路 . Aimed at the defects existed in content based image retrieval systems for optimization model and generalization design, a new scheme on relevance retrieval of image features in the systems is provided. Based on the method of describing and extracting single feature of image, the scheme analyzes unitary weight coefficient of assorted features of image and adopts interactive relevance feedback principle between man and computer. Under the research of relevance retrieval algorithm for image features and referring to the universal systems design norm provided in the MPEG 7, a conceptual design for optimizing the universal images retrieval model in the scheme is implemented. It provides a new idea for resolving the bottleneck problem: the practicability of content based image retrieval techniques on Internet. The rationality of the new scheme is validated by experimental results.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2002年第3期97-99,共3页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 广西壮族自治区自然科学基金资助项目 (0 0 0 70 12 )
关键词 相关性检索 内容图像检索 图像特征 相关反馈 特征提取 特征检索 content based image retrieval image features relevance feedback
  • 相关文献

参考文献6

  • 1[1]Myron F. Query by image and video content: the QBIC system. Computer, 1995, 9(1): 23~32
  • 2[2]Niblack W, Zhu X, Hafner J L, et al. Updates to the QBIC system. In: SPIE, 1998, 332: 150~161
  • 3[3]Mehtre B M. Content-based image retrieval using a composite color-shape approach. Information Processing & Management, 1998, 34(1): 109~120
  • 4[4]Rui Y, Huang T S, Ortega M, et al. Relevance feedback: a power tool in interactive content-based image retrieval. IEEE CSVT, 1998, 8(5): 644~655
  • 5[5]Xu Yian, Zhang Yujin. Image retrieval framework driven by association feedback with feature element evaluation built. In: SPIE, 2001, 15: 118~129
  • 6[6]Michael S L. Next-Generation Web searches for visual content. Computer, 2000, 33(11): 46~53

同被引文献59

  • 1李亚春,夏德深,徐萌.小波变换在图像纹理分析中的研究进展[J].计算机工程与应用,2005,41(35):47-51. 被引量:11
  • 2彭玲,赵忠明,杨健,马江林.基于小波域隐马尔可夫树模型的多光谱遥感影像纹理分割技术研究[J].武汉理工大学学报(交通科学与工程版),2006,30(4):561-564. 被引量:3
  • 3马超,唐治德.相关反馈技术在图像检索系统中的应用[J].重庆科技学院学报(自然科学版),2007,9(1):81-84. 被引量:5
  • 4张剑 黄敏 主编.服装CAD技术[M].北京:清华大学出版社,2003..
  • 5杨明 主编.矩阵论[M].武汉:华中科技大学出版社,2002..
  • 6Tuceryan M, Jain A K. The handbook of pattern recognition and computer vision[M]. World Scientific Publishing, 1998.
  • 7Randen T, Husoy J H. Filtering for texture classification: a comparative study[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1999, 21(4) : 291-310.
  • 8Haralick R M. Textural features for image classification[J]. IEEE Transactions on Systems, Man and Cybernetics, 1973,3(6) :610-621.
  • 9Clausi D A. An analysis of co-occurrence texture sta tistics as a function of Grey level Quantization[J]. Canadian Journal of Remote Sensing, 2002,28 (1) 45-62.
  • 10Chellappa R, Chatterjee S. Classification of texture using gaussian markov random field Models[J]. IEEE Transactions on. Acoustics, Speech, and Signal Processing, 1984, 33(4):959-963.

引证文献5

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部