期刊文献+

基于径向基函数神经网络的混合像元分解 被引量:17

Mixed Image Cell Decomposition Based on Radial-basis Function Neural Networks
下载PDF
导出
摘要 遥感图像中普通存在着混合像元 ,对这部分像元进行分类 (即混合像元分解 )是遥感图像处理中的难点。基于主分量分析的混合像元分解算法是一种较为成熟的算法 ,但它存在着计算量大 ,适应性差等缺点。在深入研究混合像元分解原理的基础上 ,提出了用径向基函数神经网络拟合分解结果超平面 ,以实现混合像元分解的算法 ,实验结果证明 :该算法的结果与基于主分量分析的混合像元分解算法结果相近 (相关系数达到 0 99) ,而计算量大大减少 ,具有较强的适应性。 Remote sensing images contain a lot of mixed image cells, and it is difficult to classify these cells. Mixed image cells decomposition algorithm based on principle component analysis is a widely used algorithm, but the large computation amount and less flexibility are its main drawbacks. By researching the curve fitting (approximation)theory of the radial basis function neural networks, and the principles of the mixed image cells decomposition algorithm based on principle component analysis, the paper proposes a new decomposition algorithm, which uses the radial basis function neural networks to fit (approximate) the hyperplane of the decomposition results of the principle component analysis algorithm. Experimental results prove that the results of the new algorithm are almost the same with the results of the principle component analysis algorithm (correlation coefficients are above 0.99). However, the new algorithm has much less computation complexity and more flexibility than the principle component analysis algorithm.
作者 张彦 邵美珍
出处 《遥感学报》 EI CSCD 北大核心 2002年第4期285-288,T001,共5页 NATIONAL REMOTE SENSING BULLETIN
关键词 混合像元 主分量分析 径向基函数神经网络 曲面拟合 遥感图像 mixed image cells principle component analysis radial basis function neural networks (RBFN) curve fitting (approximation)
  • 相关文献

参考文献2

共引文献78

同被引文献301

引证文献17

二级引证文献163

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部