期刊文献+

基于权值的引力搜索算法在电力系统最优潮流计算中的应用 被引量:5

Calculation of optimal power flow problem using search algorithm based on weight of gravitation
下载PDF
导出
摘要 引力搜索算法是由Esmat Rashedi教授提出的新型启发式算法。本文将基于权值的引力搜索算法应用于电力系统最优潮流计算中。为对该算法的实用性进行研究,将其应用于标准IEEE30节点和标准IEEE57节点系统,并与粒子群和遗传算法进行比较。实验结果表明,改进的引力搜索算法能够有效地解决电力系统中的最优潮流问题。 The gravitational force search algorithm is a new heuristic algorithm proposed by Professor Esmat Rashedi. This article describes the search algorithm based on the weight of gravitation used in the calculation of the optimal power flow. Compared with the gravitational search algorithm, the algorithm adds a weight value on the inertial mass of the particles in every iteration of the process. The algorithm will be applied to the standard IEEE30 and standard IEEE57 node system, and is compared with particle swarm optimization and genetic algorithms. The power generation cost minimization is selected as the objective function, and the convergence of the three algorithms, the number of iterations and the computing time are compared. Experimental results show that the improved gravitation- al force search algorithm can be successfully and effectively find the best optimum control variable setting of the test system, and also the robustness and superiority of the improved the GSA algorithm for optimal power flow problem are proved.
出处 《电工电能新技术》 CSCD 北大核心 2014年第7期62-66,共5页 Advanced Technology of Electrical Engineering and Energy
关键词 电力系统 最优潮流 引力搜索算法 节点系统 power systems optimal power flow gravitational search algorithm node system
  • 相关文献

参考文献10

  • 1赵冬梅,卓峻峰.电力系统最优潮流算法综述[J].现代电力,2002,19(3):28-34. 被引量:15
  • 2徐遥,王士同.引力搜索算法的改进[J].计算机工程与应用,2011,47(35):188-192. 被引量:43
  • 3刘勇,马良.非线性极大极小问题的混沌万有引力搜索算法求解[J].计算机应用研究,2012,29(1):47-48. 被引量:27
  • 4Abido M A. Optimal power flow using tabu search algo- rithm [J]. Electr. Power Compo. and Syst., 2002, 30 (5) : 469-483.
  • 5Ceylan O, Ozdemir A, Dag H. Gravitational search algo- rithm for post-outage bus voltage magnitude calculations [ A]. International Universities' Power Engineering Con- ference [C]. Wales, UK, 2010.
  • 6K S Tang, K F Man, S Kwong, et al. Genetic algo- rithms and their applications [ J]. IEEE Signal Process- ing Magazine, 1996, 13 (6): 22-37.
  • 7Li C, Zhou J. Parameters identification of hydraulic tur- bine governing system using improved gravitational search algorithm I J]. Energy Convers Manage, 2011, 52: 374-381.
  • 8Roa-Sepulveda C A, Pavez-Lazo B J. A solution to the optimal power flow using simulated annealing [ J]. Elec- tr. Power Energy Syst., 2003, 25: 47-57.
  • 9J D Farmer, N H Packard, A S Perelson. The immune system, adaptation and machine learning [ J]. Physica, 1986, (2): 187-204.
  • 10B Schutz. Gravity from the ground up [ M]. Cambridge: Cambridge University Press, 2003.

二级参考文献29

  • 1文新辉,陈开周,牛明洁.解无约束极大极小问题的非对称神经网络算法[J].电子学报,1995,23(12):111-114. 被引量:2
  • 2黄震宇,沈祖和.解一类非线性极大极小问题的熵函数方法[J].科学通报,1996,41(17):1550-1554. 被引量:26
  • 3马良,朱刚,宁爱兵.蚁群优化算法[M].北京:科学出版社,2008,2.
  • 4Karakuzu J, Eberhart R C.Particle swarm optimization[C]//Proceedings of IEEE International Conference on Neural Networks, 1995,4:1942-1948.
  • 5Tang K S, Man K F, Kwong S, et al.Genetic algorithms and their applications[J].IEEE Signal Processing Magazine, 1996, 13 (6) :22-37.
  • 6Kirkpatrick S, Gelatto C D, Vecchi M EOptimization by simulated annealing[J].Science, 1983,220: 671-680.
  • 7Dorigo M, Maniezzo V, Colomi A.The ant system: optimization by a colony of cooperating agents[J].IEEE Transactions on Systems, Man,and Cybernetics:Part B, 1996,26(1) :29-41.
  • 8Rashedi E, Nezamabadi-pour H, Saryazdi S.GSA: a gravitational search algorithm[J].lnformation Sciences,2009, 179(13) :2232-2248.
  • 9Kenyon I R.General relativity[M].[S.1.]:Oxford University Press, 1990.
  • 10Du W, Li B.Multi-strategy ensemble particle swarm optimization for dynamic optimization[J].Information Science, 2008, 178 (15) : 3096-3109.

共引文献74

同被引文献35

引证文献5

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部