期刊文献+

鱼粉粗蛋白含量近红外模型的建立 被引量:3

Establishment of NIRS Model for Determining the Content of Crude Protein in Fish Meal
下载PDF
导出
摘要 [目的]为鱼粉粗蛋白含量提供一种快速、低廉、准确可靠的分析方法。[方法]以国内常见鱼粉为材料,使用InfraXact Lab型近红外光谱分析仪测定鱼粉的近红外光谱值,并采用常规凯氏定氮法测定鱼粉样品中粗蛋白含量,建立鱼粉粗蛋白含量的近红外分析模型,并对模型测定结果进行预测准确性评价。[结果]鱼粉粗蛋白含量定标方程的SECV值为0.515,1-VR值为0.865,粗蛋白含量的验证参数SEC值为0.302,RSQ值为0.925,说明定标方程的预测能力较好,可用来进行鱼粉粗蛋白含量的测定。[结论]建立的鱼粉粗蛋白含量近红外分析模型具有一定的实用价值,可用于鱼粉常规养分分析的实际工作。 [Objective] The research aimed to provide a rapid,cheap and reliable determination method for the content of crude protein in fish meal.[Method] Taking common domestic fish meal as test materials,the near infrared spectrum value of fish meal was determined by using InfraXact Lab near-infrared spectroscopy analyzer and the content of crude protein in fish meal samples was determined by using conventional Kjeldahl method.NIRS model for the determination of crude protein content in fish meal was established and the prediction accuracy of the determination results by using NIRS model was evaluated.[Result] The standard error of cross-validation (SECV),cross-validation correlation coefficient (1-VR),standard error of calibration (SEC),and egression squared (RSQ) of the calibration equation for the determination of crude protein content in fish meal were 0.515,0.865,0.302 and 0.925,respectively.It was proved that the calibration equation had better prediction ability,so it could be used for the determination of crude protein content in fish meal.[Conclusion] The established NIRS model for the determination of crude protein content in fish meal had certain application value,so it could be used in the conventional nutrient analysis of fish meal in practice.
出处 《安徽农业科学》 CAS 2014年第21期7041-7042,7058,共3页 Journal of Anhui Agricultural Sciences
关键词 鱼粉 粗蛋白 近红外模型 Fish meal Crude protein NIPS model
  • 引文网络
  • 相关文献

参考文献7

二级参考文献32

共引文献529

同被引文献38

  • 1王文真.样品粒度对近红外分析结果的影响[J].分析仪器,1993(2):52-54. 被引量:14
  • 2苏彩珠,梁震,黄宇鹏,肖昕,陈奕.进口鱼粉蛋白质含量快速检测[J].检验检疫科学,2005,15(2):9-12. 被引量:3
  • 3牛智有,韩鲁佳,苏晓鸥,杨振海.鱼粉品质的近红外反射光谱快速检测方法[J].农业机械学报,2005,36(5):68-71. 被引量:11
  • 4李彦周,闵顺耕,刘霞.主成分分析在近红外定量分析校正集样本优选中的应用[J].分析化学,2007,35(9):1331-1334. 被引量:23
  • 5Olsen R L, Hasan M R. A limited supply of fishmeal: impact on future increases in global aquaculture production [J]. Trends in Food Science & Technology, 2012, 27 (2) : 120 - 128.
  • 6Burns D A, Ciurczak E W. Handbook of near-infrared analysis[ M]. 3rd ed. Boca Raton: CRC Press LLC, 2006.
  • 7Chen H Z, Ai W, Feng Q x, et al. FT - NIR spectroscopy and Whittaker smoother applied to joint analysis of duel-components for corn [ J]. Spectrochimica Acta Part A : Molecular and Biomolecular Spectroscopy, 2014, 118 : 752 - 759.
  • 8Breiman L. Random forests [J]. Machine Learning, 2001,45(1) : 5 -32.
  • 9Fukuda S, Yasunaga E, Nagle M, et al. Modelling the relationship between peel colour and the quality of fresh mango fruit using Random Forests [J]. Journal of Food Engineering, 2014, 131 : 7 - 17.
  • 10Zheng L, Watson D G, Johnston B F, et al. A chemometric study of chromatograms of tea extracts by correlation optimization warping in conjunction with PCA, support vector machines and random forest data modeling[ J]. Analytica Chlmica Acta, 2009, 642 : 257 - 265.

引证文献3

二级引证文献20

相关主题

;
使用帮助 返回顶部