期刊文献+

考虑风电不确定性的区间经济调度模型及空间分支定界法 被引量:47

Interval Economic Dispatch Model with Uncertain Wind Power Injection and Spatial Branch and Bound Method
下载PDF
导出
摘要 大规模风电接入电网后,其间歇性和随机性使网络注入功率呈现一定的波动性,给传统确定性的经济调度带来了极大的挑战。以区间数形式对不确定量进行刻画和建模后,采用经济调度得到的优化解也呈现为区间形式。为精确求解区间上下边界(乐观解和悲观解),将区间优化模型转化为两个确定性的数学规划问题:乐观优化模型为一个简单的线性规划问题,而悲观优化模型为一个NP难问题,根据对偶定理,进一步将该模型转化为一个双线性规划模型,基于线性松弛技术和空间分支定界方法,可以找到该模型的全局最优解。含不确定注入的区间经济调度为调度运行人员提供了直观的上下界信息,为安全评估提供支撑。最后,采用15机300节点系统,分别以日前计划和日内滚动计划为例,并与内点法和穷举法进行对比,结果验证了该方法的有效性。 Power injection becomes stochastic due to large-scale wind power integration into power grid, which greatly challenges the traditional power grid. If the uncertainty is modelled using the interval number, the solution of economic dispatch model can also be represented as an interval number. To achieve the precise upper and lower bound, two deterministic programming models were deduced: the optimistic solution can be obtained by an optimistic model using linear programming, whereas the pessimistic solution achieved by a pessimistic model is an NP-hard problem, which can be transformed into a bilinear programming by duality theory. Then a linear relaxation technology, spatial branch and bound method were used to obtain the global pessimistic solution. Therefore, the interval bound information can provide the operator with institutive bound information for the future security assessment. Finally, a test system with 15 generators and 300 nodes was studied at different time scales. The result, compared with interior point method and enumeration, shows the effectiveness of proposed method.
出处 《中国电机工程学报》 EI CSCD 北大核心 2014年第22期3707-3714,共8页 Proceedings of the CSEE
基金 国家重点基础研究发展计划(973计划,2013CB228203) 国家自然科学基金项目(51277105) 国家杰出青年科学基金项目(51025725)~~
关键词 风电 区间优化 经济调度 双线性规划 线性松弛技术 空间分支定界 对偶规划 wind power interval optimization economicdispatch bilinear programming linear relaxation technology spatial branch and bound duality theory
  • 相关文献

参考文献18

  • 1Morales J M,Perez R J.Point estimate schemes to solve the probabilistic power flow[J].IEEE Trans. on Power Systems,2013,28(2):1550-1559.
  • 2Hajian M,Rosehart W D,Zareipour H.Probabilistic power flow by Monte Carlo simulation with Latin supercube sampling[J].IEEE Trans. on Power Systems,2007,22(4):1594-1601.
  • 3Miranda V,Saralva J T.Fuzzy modelling of power system optimal load flow[J].IEEE Trans. on Power Systems,1992,7(2):843-849.
  • 4丁涛,崔翰韬,顾伟,万秋兰.基于区间和仿射运算的不确定潮流算法[J].电力系统自动化,2012,36(13):51-55. 被引量:62
  • 5王守相,武志峰,王成山.计及不确定性的电力系统直流潮流的区间算法[J].电力系统自动化,2007,31(5):18-22. 被引量:30
  • 6Zhang H,Li P.Probabilistic analysis for optimal power ?ow under uncertainty[J].IET Generation,Transmission & Distribution,2010,4(5):553-561.
  • 7Yu H,Rosehart W D.An optimal power flow algorithm to achieve robust operation considering load and renewable generation uncertainties[J].IEEE Trans. on Power Systems,2012,27(4):1808-1817.
  • 8Lee J,Kim J H,Joo S K.Stochastic method for the operation of a power system with wind generators and superconducting magnetic energy storages(SMESs) [J].IEEE Transactions on Applied Superconductivity,2011,21(2):2144-2148.
  • 9Zhang Hui,Li P.Chance constrained programming for optimal power flow under uncertainty[J].IEEE Trans. on Power Systems,2011,26(4):2417-2424.
  • 10Wang Y,Xia Q,Kang C Q.Unit commitment with volatile node injections by interval optimization[J].IEEE Trans. on Power Systems,2011,26(3):1705-1713.

二级参考文献33

共引文献81

同被引文献694

引证文献47

二级引证文献611

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部