期刊文献+

改进的重叠蚁群优化算法 被引量:2

Improved Overlap Ant Colony Optimization Algorithm
下载PDF
导出
摘要 针对蚁群优化算法在进行全局最优解搜索时容易陷入局部最优解和收敛速度缓慢等缺陷,提出了一种有效求解全局最优解搜索问题的重叠蚁群优化算法。该算法通过设置多个重叠的蚁群系统,并对每一个蚁群初始化不同的参数,之后在蚁群之间进行信息素的动态学习,增强了不同蚁群对最优解的开采能力,避免了算法出现早熟现象。仿真实验结果表明,重叠蚁群优化算法在避免陷入局部最优解方面具有良好的效果,是一种提高蚁群算法性能的有效的改进算法。 Considering that the ant colony optimization (ACO) algorithm in solving global optimal solution search problems has the defects such as slow convergence and prone to local optimal solution phenomenon, this paper provides an overlap ant colony optimization (OACO) algorithm to solve global optimal solution search problem. By setting multiple overlapping ant colony, initializing different parameters of every ant colony, and learning dynamically between ant colony pheromones, OACO algorithm reinforces the exploitation of ant colony optimization algorithm and avoids premature phenomenon. The experimental results show that OACO algorithm achieves good results in avoiding falling into local optimal solution, and is an efficient and effective improved ant colony optimization algorithm.
出处 《计算机科学与探索》 CSCD 2014年第8期1002-1008,共7页 Journal of Frontiers of Computer Science and Technology
基金 国家自然科学基金Nos.61321491 61375069 61105069 江苏省科技支撑计划 No.BE2012161~~
关键词 蚁群优化(ACO) 局部最优解 重叠蚁群优化 动态学习 ant colony optimization (ACO) local optimal solution overlap ant colony optimization dynamic learning
  • 相关文献

参考文献13

  • 1Michalewicz Z. Genetic algorithms+ data structures=evolution programs[M]. Berlin: Springer, 1996.
  • 2Koza J R. Genetic programming: on the programming of com- puters by means of natural selection[M]. Cambridge, MA, USA: MIT Press, 1992: 94-101.
  • 3Dorigo M. Optimization, learning and natural algorithms[D]. Milano, Italy: Politecnico di Milano, 1992.
  • 4Gambardella L M, Dorigo M. Ant-Q: a reinforcement learning approach to the traveling salesman problem[C]//Proceedings of the 12th International Conference on Machine Learning (ICML '95). San Francisco, CA, USA: Morgan Kaufmann, 1995: 252-260.
  • 5Stutzle T, Hoos H. MAX-MIN ant system and local search for the traveling salesman problem[C]//Proceedings of the 1997 IEEE International Conference on Evolutionary Com- putation (ICEC '97). Piscataway, NJ, USA: IEEE, 1997: 309-314.
  • 6郑卫国,田其冲,张磊.基于信息素强度的改进蚁群算法[J].计算机仿真,2010,27(7):191-193. 被引量:18
  • 7张学敏,张航.基于改进蚁群算法的最短路径问题研究[J].自动化技术与应用,2009,28(6):4-7. 被引量:21
  • 8Dorigo M, Maniezzo V, Colorni A, et al. Positive feedback as a search strategy. 1991.
  • 9Duan Haibin, Ma Guanjun, Liu Senqi. Experimental study of the adjustable parameters in basic ant colony optimization algorithm[C]//Proceedings of the 2007 IEEE Congress on Evolutionary Computation (CEC '07). Piscataway, NJ, USA: IEEE, 2007: 149-156.
  • 10Dorigo M, Gambardella L M. Ant colony system: a coopera- tive learning approach to the traveling salesman problem[J]. IEEE Transactions on Evolutionary Computation, 1997, 1(1): 53-66.

二级参考文献16

  • 1付宇,肖健梅.动态自适应蚁群算法求解TSP问题[J].计算机辅助工程,2006,15(4):10-13. 被引量:5
  • 2COLORM A,DORIGO M,MINIEZZO V.Distributed optimization by ant colonies[C].Proceeding of the First European Conference on Artificial Life.Paris France:Elsevier Publishing, 1991 : 134-142.
  • 3DORIGO M,GAMBARDELLA L M.Ant colony system: a cooperative learning approach to the traveling salesman problem [J].IEEE Transactions on Evolutionary Computation,1997,1(1): 53-66.
  • 4ZHONGZHEN YANG,BIN YU,CHUNTIAN CHENG. A parallel ant colony algorithm for bus network optimization[J]. Computer-Aid Civil and Infrastructure Engineering, 2007,22(1): 44-55.
  • 5ATTIRATANASUNTHRON NATTAPAT, FAKCHAROENPHOL JITTAT.A running time analysis of an ant colony optimization algorithm for shortest paths in directed acyclic graphs[J].Information Processing Letters,2008,105(3):88-92.
  • 6Wang Ying,Xie Jian-ying.Ant colony optimization for multicast routing[C].Proceedings of the IEEE Asia-Pacific Conference on Circuits and Systems,Piscataway (NJ,USA):IEEE,2000.54-57.
  • 7T Stutzle,H Hoos.MAX-MIN Ant System and Local Search for the Traveling Salesman Problem.Proc[C].IEEE International Conference on Evolutionary Computation,1997-04:309-314.
  • 8S Thomas,H H Holger.Max-Min ant system[J].Future Generation Computer Systems,2000,16(8):889-2914.
  • 9M Dorigo,L M Gambardella.Ant colony system:A cooperative learning approach to the traveling salesman problem[J].IEEE Transactions on Evolutionary Computation,1997,1(1):53-66.
  • 10夏立民,王华,窦倩,陈玲.基于蚁群算法的最优路径选择问题的研究[J].计算机工程与设计,2007,28(16):3957-3959. 被引量:18

共引文献32

同被引文献26

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部