期刊文献+

隧道地震预报波场的有限元数值模拟 被引量:6

Wavefield Modeling Based on the Finite Element Method for the Tunnel Seismic Prediction
下载PDF
导出
摘要 在勘探地球物理领域中,能快速、有效地数值模拟2D和3D的地震全波场,包括同时模拟P波、S波、面波多分量波场特征的软件并不是很多;但在结构力学领域中,已有多种成熟的多波多分量有限元数值模拟大型商用软件用于求解弹性本构方程,如ANSYS,PLAXIS等。从方程结构来看,弹性本构方程与完全弹性波动方程相比,只多一项对时间的一阶微分项——阻尼项。因此,调整合理的介质参数——Rayleigh系数,令阻尼项近似为0,弹性本构方程就蜕化为完全弹性波动方程。隧道地震波场是在岩体中传播,具有弹性参数较好、无常规地震勘探中覆盖层等低速带干扰等的优点,采用ANSYS软件对隧道地震波场进行数值模拟,研究了频散、阻尼与吸收边界等数值模拟的相关技术。针对介质吸收,比较了数值模拟中有无阻尼的时间记录和波场快照,对隧道地震预报来说,将阻尼系数设定为0是一种合理的假设;比较了实例中不同网格长度与频散的关系,当网格长度小于波长的1/π倍时,才能消除频散;通过由波方程的推导,引入了黏弹性边界条件,通过实例计算证明它可以有效地吸收边界反射;最后对隧道地震预报进行了实例计算,算例表明采用ANSYS软件可以有效地模拟隧道复杂地质条件下全波场的激发传播过程。 In the field of exploration geophysics,the software packages that can fast and efficiently simulate 2D and 3D seismic full-wavefield,including simultaneously simulate P-wave,S-wave,and surface wave are not very much.In the structure mechanics,however,many sophisticated commercial software packages based on the finite element method including ANSYS and PLAXIS for multi-wave and multi-component have been employed for the solutions of the elastic constitutive equations.Compared to the complete elastic wave equations,the elastic ones include a damping term,which is a first-order differential term time.Therefore,by adjusting the parameter of the medium,that is,the Rayleigh coefficient to make the damping to zero,the elastic constitutive equations will degenerate into full elastic wave equation.The wavefields propagating in the rocks of a tunnel are free of the disturbance of low velocity resulting from the cover layer in the conventional seismic exploration. We simulated the wavefields of the tunnel seismic prediction using the ANSYS software,and researched the dispersion, damping and absorbing conditions etc.in the numerical modeling.For medium absorption,we compared time records and snapshots of the wavefields in the numerical simulation for the cases with and without the damping.In the tunnel seismic prediction,setting the damping to zero is a reasonable assumption. By comparing the relation of different grid length and dispersion in the numerical example,we find that the dispersion disappears when the mesh size is smaller than the wavelength of 1/π.By introducing a viscoelastic boundary condition deduced from the wave equation,boundary reflections can be effectively absorbed.Finally,an numerical example of the tunnel seismic prediction shows that the usage of the ANSYS software can effectively simulate the propagation of waves in the complicated geological conditions.
出处 《吉林大学学报(地球科学版)》 EI CAS CSCD 北大核心 2014年第4期1369-1381,共13页 Journal of Jilin University:Earth Science Edition
基金 国家自然科学基金项目(40874051)
关键词 数值模拟 ANSYS 有限元 隧道地震预报 地震波场 阻尼 频散 边界条件 numerical modeling ANSYS FEM tunnel seismic prediction seismic wavefield damping dispersion boundary condition
  • 相关文献

参考文献31

  • 1刘志刚,刘秀峰.TSP(隧道地震勘探)在隧道隧洞超前预报中的应用与发展[J].岩石力学与工程学报,2003,22(8):1399-1402. 被引量:183
  • 2Hanson D R, Haramy K Y, Neil D M. Seismic Tomo- graphy Applied to Site Characterization[M]. Denver.. American Society of Civil Engineers, 2000.
  • 3佘德平.波场数值模拟技术[J].勘探地球物理进展,2004,27(1):16-21. 被引量:34
  • 4Boore D M A. Note on the Effect of Simple Topogra- phy on Seismic SH Waves[J]. Bulletin of the Seismo- logical Society of America, 1972, 62(1) : 275 - 284.
  • 5Carcione M, Kosloff, Kosloff R. Wave Propagation Simulation in a Linear Viscoelastic Medium[J]. Geo- physical Journal, 1988, 95(3); 597-611.
  • 6Talezer H, Carcione J M, Kosloff D. An Accurate and Efficient Scheme for Wave-Propagation in Linear Vis- coelastic Media[J]. Geophysics, 1990, 55(10): 1366 - 1379.
  • 7Robertsson. Numerical Free-Surface Condition for Elastic Viscoelastic Finite-Difference Modeling in the Presence of Topography[J]. Geophysics, 1996, 61 (6) : 1921 - 1934.
  • 8Graves R W. Simulating Seismic Wave Propagation in 3D Elastic Media Using Staggered-Grid Finite Differences[J]. Bulletin of the Seismological Society of America, 1996, 86(4) : 1091 - 1106.
  • 9Carcione J, Quiroga-Goode G, Cavallini F. Wavefronts in Dissipative Anisotropic Media: Comparison of the Plane-Wave Theory with Numerical Modeling [J]. Geophysics, 1996, 61(3); 857-861.
  • 10Ozdenvar T, McMechan G. Algorithms for Stag- gered-Grid Computations for Poroelastic, Elastic, Acoustic, and Scalar Wave Equations[J]. Geophysi- cal Prospecting, 1997, 45(3) : 403 - 420.

二级参考文献57

共引文献727

同被引文献108

引证文献6

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部