期刊文献+

蓄热体余热回收换热器强化传热数值模拟 被引量:2

Numerical Simulation of Regenerator Heat Transfer of Waste Heat Recovery in Enhanced Heat Exchanger
下载PDF
导出
摘要 利用高温空气燃烧技术的原理,建立了蜂窝陶瓷蓄热体的传热数学模型;通过数值模拟对蜂窝陶瓷蓄热体和蓄热室的结构和操作参数进行优化,提高蜂窝陶瓷蓄热体的余热回收效率。应用流体力学软件CFD模拟蜂窝陶瓷蓄热体在稳定工况下的传热特性及流动特性。研究表明:蜂窝陶瓷从300 K开始工作,到稳定工作状态要经历一个启动过程,冷态到热态时,预热空气温度和排烟温度不断升高直至达到稳定状态;蜂窝陶瓷温度分布的等温线为水平线分布,中间气体等温线为抛物线分布;蜂窝陶瓷处于静止状态,气体速度分布的等速线为抛物线分布;压力分布等压线呈水平线分布。 The principle of using high-temperature air combustion technology,a mathematical model of heat transfer honeycomb ceramic regenerator is established.Through numerical simulation and optimization of honeycomb ceramic regenerator structure and operating parameters,the paper improve the efficiency of waste heat recovery ceramic honeycomb regenerator.By applying CFD,cellular ceramic regenerator heat transfer characteristics in a stable condition and flow characteristics are simulated.In the process,the honeycomb ceramics starts from 300 K,to reach steady working state.It is a boot process that the experiment starts from cold to hot,air preheated temperature and exhaust gas temperature are maintained until it reaches steady state.The distribution of honeycomb ceramics temperature is a horizontal distribution,and the intermediate gas isotherm is paraboli.Ceramic honeycomb is in a quiescent state,the constant velocity of the gas velocity distribution line is also parabolic distribution.Pressure distribution isobars is horizontal distribution.
出处 《实验室研究与探索》 CAS 北大核心 2014年第7期62-66,70,共6页 Research and Exploration In Laboratory
基金 江苏省2013省级实验教学与实践教育中心建设项目 中国矿业大学2011年课程建设与教学改革项目(201160)
关键词 蜂窝陶瓷蓄热体 蓄热室 余热回收 换热器 数值模拟 honeycomb ceramic regenerator heat accumulator waste heat recovery heat exchanger numerical simulation
  • 相关文献

参考文献14

二级参考文献27

  • 1倪振伟.换热器的热力学第二定律分析与评价方法[J].工程热物理学报,1985,6(4):311-314.
  • 2.中日钢铁节能技术研讨会会发言稿资料集[M].北京,1999(7)..
  • 3.中日钢铁节能技术研讨会会发言稿资料集[C].北京,1999(7)..
  • 4E E卡里尔著.燃烧室与工业炉的模拟.陈熙,周晓青译.北京:科技出版社,1987.
  • 5[1] SUZUKAWA Y, SUGIYAMA SH, HINO Y, et al.Heat Transfer Improve men t and NOX Reduction by Highly Preheated Air Combustion[J].Energy Convers Mgm t.,1997,38(10):1061~1071.
  • 6WiUmott A.J., Duggan R.C., Refined closed methods for the contm-flow thermal regenerator problem[J] .Int.J. Heat and Mass Transfer 1980, 23(5) :655--662.
  • 7G. D. Dragutinovic and B- S. Baclic, Operation of Counterflow Regenerators [M] (International Series on Developments in Heat Transfer, V. 4). Southampton, UK ;Boston, USA -Computa-tional Mechanics Publications, c1998.
  • 8H. Klein and G. Eigenberger, Approximate solutions for metallic regenerative heat exchangers [J ]. Int. J. Heat and Mass Transfer,2001, (44) :3553--3563.
  • 9Willmott A.J., Digital computer simulation of a thermal regenerator[J ]. Int. J. Heat Mass Transfer, 1964, 7 ( 11 ) : 1291 -- 1302.
  • 10R. K. Shah, A correlation for longitudinal heat conduction effects in periodic flow heat exchanger [ J ] . ASME J . Eng. Power ,1995, (97) :453--454.

共引文献78

同被引文献11

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部