期刊文献+

基于混合特征匹配的微惯性/激光雷达组合导航方法 被引量:17

MEMS IMU/LADAR Integrated Navigation Method Based on Mixed Feature Match
原文传递
导出
摘要 微惯性/激光雷达(MEMS IMU/LADAR)组合导航系统在室内应用时,由于室内结构化环境下环境特征(如点和线段)分布稀疏,传统的单一特征匹配算法存在观测盲区,易造成导航定位参数估计误差大的问题。基于此,研究了激光雷达自适应数据分割方法的点和线段的特征提取算法,提出了基于混合特征匹配观测模型的MEMS IMU/LADR扩展卡尔曼滤波(EKF)算法。同时,设计了MEMS IMU/LADR组合导航试验样机,在室内环境下通过试验对滤波算法进行了验证。结果表明:提出的算法在室内结构化环境下相比传统单一点或线特征匹配组合定位算法的定位精度可提高60%,对于小型旋翼无人飞行器在室内结构化环境中的高精度定位具有较高的参考意义。 Usually,there are observation blind areas existing in that the distribution of land marks like angular point and line segment is parse in indoor environment.Then the locating accuracy of vehicle and the estimating precision of land marks is affected by the lack of observed quantities when using the traditional single feature matching algorithm.To solve these problems,the adaptive segmentation method of LADAR is studied,and the extraction algorithm of different types of land marks is researched,then the extended Kalman filter is presented based on the mixed feature matching observation model.At the same time,a test prototype of MEMS IMU/LADAR integrated navigation system is designed.To validate the filtering fusion algorithm,the analysis and tests are carried out in the indoor environment.The test results show that the accuracy of proposed algorithm relative to the traditional algorithm(a single point or line feature match integrated location algorithm)in the structured indoor environment increass about 60%.This indicates that the algorithm is efficient when used to improve accuracy of the MEMS IMU/LADAR integrated navigation system.
出处 《航空学报》 EI CAS CSCD 北大核心 2014年第9期2583-2592,共10页 Acta Aeronautica et Astronautica Sinica
基金 国家自然科学基金(61273057 61374115) 江苏省普通高校研究生科研创新项目(CXZZ12_0159)~~
关键词 微惯性测量单元 激光雷达 混合特征匹配算法 扩展卡尔曼滤波 同步定位与建图 MEMS inertial measurement unit laser radar mix feature matched algorithm extended Kalman filter simultaneous localization and mapping
  • 相关文献

参考文献6

二级参考文献64

  • 1颜苗,翁海娜,谢英.系统参数标定以及惯性元件安装误差测量与补偿技术研究[J].中国惯性技术学报,2006,14(1):27-29. 被引量:30
  • 2李荣冰,刘建业,段方,牛新元.MEMS-INS微型飞行器姿态确定系统的实现研究[J].应用科学学报,2006,24(6):618-622. 被引量:10
  • 3陈杨钟,刘士荣,俞金寿.基于非线性滤波的移动机器人位姿估计[J].华东理工大学学报(自然科学版),2007,33(4):558-563. 被引量:1
  • 4Kim A,Golnaraghi M F.Initial calibration of an inertial measurement unit using an optical position tracking system[C]//Position Location and Navigation Symposium,26-29 April 2004:96-101.
  • 5Pei-Hwa Lo,Siebert D,Califano H T.Low cost fiber optic rate sensor inertial measurement unit[C]//IEEE Position Location and Navigation Symposium,20-23 April 1998:256-263.
  • 6Hanson R,Pachter M.Optimal gyro-free IMU geometry[C]//AIAA Guidance,Navigation,and Control Conference and Exhibition,2005.
  • 7Barbour N M. Inertial navigation sensors[R]. NA- TO RTO Lecture RTO-EN-SET-116. [S. 1. ] : Low- Cost Navigation Sensors and Integation Technology, 2010:25-27.
  • 8Sharma A, Zaman M F, Zucher M, et al. A 0. l/hr bias drift electronically matched tuning fork microgy- roseope[C]// 2008 IEEE 21st International Confer- ence on Micro Electro Mechanical Systems. Tucson, AZ, USA:IEEE, 2008:6-9.
  • 9Honeywell International Inc. HG1900 MEMS IMU datasheet [R]. M61-0152-000-002. [S. 1. ]: Honey- well, 2010:1-2.
  • 10Perlmutter M, Robin L. High-performance, low cost inertial MEMS: A market in motion[C]// 2012 IEEE/ION Position Location and Navigation Sympo- sium (PLANS). Myrtle Beach, SC, USA: IEEE, 2012:225-229.

共引文献57

同被引文献137

引证文献17

二级引证文献92

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部