期刊文献+

基于粗糙集理论的遗传属性约简算法研究 被引量:3

Study of genetic algorithm of attribute reduction based on rough set
下载PDF
导出
摘要 传统的属性约简算法效率低下,容易陷入局部极小值,不适用于大型知识库.文中提出一种基于粗糙集理论的遗传属性约简方法,在传统的属性约简方法基础上对适应度函数、交叉和变异的概率、变异方式和种群修复方式进行了改进.在正域区分对象集的研究基础上,用启发信息设计了一种快速的属性约简算法,并利用Matlab工具进行仿真,将仿真结果与前人研究结果作对比.实验表明此算法优于前人的算法,能够快速高效地对大型知识系统求其约简. Traditional attribute reduction algorithm efficiency is low. It is easy to fall into local minimum value and shall not be applied to the large decision table. This paper proposes a genetic attribute reduction method based on rough set theory. Compared with traditional attribute reduction methods,it improves the fitness function the crossover probability,the mutation probability and the mutation methods. It takes advantage of heuristic in-formation in design a new efficient genetic algorithm of attribute reduction based on rough set. It makes use of Matlab tools to the simulation and compares the simulation results with predecessors' research results. The emu-late example and experiment results show that the algorithm could compute the attribute reduction of the decision table quickly and efficiently,especially in tackling a large decision table.
出处 《江苏科技大学学报(自然科学版)》 CAS 2014年第3期271-276,共6页 Journal of Jiangsu University of Science and Technology:Natural Science Edition
关键词 粗糙集 属性约简 属性分类能力 遗传算法 变异方式 rough set attribute reduction attribute classification ability genetic algorithm mutation methods
  • 相关文献

参考文献17

  • 1朱果平.遗传算法在粗糙集属性约简中的研究[J].太原科技,2010(3):83-84. 被引量:1
  • 2Hewwitt J A. Technical services in 1983 [ J ]. Ubrary Resource Services, 1984,28 ( 3 ) :205 - 218.
  • 3Pawlak Z, Grzymala-Busse J, Slowinski R. Rough sets [ J]. Communications of the ACM, 1995, 8 ( 11 ) :89 - 95.
  • 4Swiniarski R W, Skowron A. Rough set methods in fea- ture selection and recognition [ J ]. Pattern Recognition Lett ,2003,24 : 833 - 849.
  • 5Liu H, Motoda H. Feature selection for knowledge dis- covery and data mining[ D]. Boston: [ s. n. ], 1998.
  • 6Wroblewski J. Fing minimal reduets using genetic algo- rithms[ A] //In: Proc. 2nd Annual Joint Conf. on In- formation Sciences. Wrightsville Beach, NC, September 28 - Octoberl86 - 189, 1995.
  • 7郑志军,郑守淇.进化神经网络中的变异算子研究[J].软件学报,2002,13(4):726-731. 被引量:8
  • 8Leung Yee, Wu Weizhi, Zhang Wenxiu. Knowledge acquisition in incomplete information systems:A rough set approach [ J ]. European Journal of Operational Re- search,2006, 168 : 164 - 180.
  • 9鲁霜.基于遗传算法的属性约简新方法[J].现代计算机,2011,17(16):7-9. 被引量:1
  • 10杨波,徐章艳,舒文豪.一种快速的Rough集属性约简遗传算法[J].小型微型计算机系统,2012,33(1):140-144. 被引量:6

二级参考文献34

共引文献52

同被引文献37

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部