期刊文献+

二维三组元液体系统声子晶体带结构研究 被引量:1

Study on Acoustic Band Gaps of phononic crystals in Two-dimensional Three-component Liquid System
下载PDF
导出
摘要 基于平面波展开法,研究了水-四氯化碳/水银和四氯化碳-水/水银两种体系的二维三组元结构的声波带隙,结果表明,在相同填充率下,圆柱形插入体比正方柱形插入体更易得到较高频率范围内的完全带隙;无论插入体的形状为方柱或圆柱,第一带隙相对宽度的变化都是稳定的,但对第二带隙相对宽度的影响较大;圆柱形插入体的第一完全带隙的相对宽度变窄的速率比正方形插入体的快。该文提出通过散射体横切面积的几何形状来控制带隙频率。这对设计液体系统的声子晶体有实际意义。 Based on the plane wave expansion method (PWE), sonic wave hand gaps in the two-dimensional three-component phononic crystals composed of square array of tetrachloromethane square columns(cylinders) coa- ted by water layers embedded in a mercury host are investigated. The calculation results show that the cylinders more easily get higher frequency band gaps than square rods do at the same filling fraction. The calculations also ex- hibit that whether the shape of the scatters is square columns or cylinders, the relative bandwidth of the first gap is stable,but the relative width of the second gap is greatly influenced by the shape of the scatters. The relative band- width of the first gap with square becomes narrower than that with circular. It is suggested that the frequencies o{ the band gaps can be controlled by the shape of the scattering objects. This could be of importance in designing pho- nonic crystals of liquid systems and finding their optimum operation conditions.
出处 《压电与声光》 CAS CSCD 北大核心 2014年第4期509-514,共6页 Piezoelectrics & Acoustooptics
基金 国家自然科学基金资助项目(11264022) 昆明市引进创新创业人才项目"五五一"计划基金资助项目(201302)
关键词 声子晶体 平面波展开法 弹性波 带隙 三组元 phononic crystals plane wave expansion method elastic wave band gaps three-component
  • 引文网络
  • 相关文献

参考文献18

  • 1KUSHWAHA M S.HALEVI P.DOBRZYNSKI L.et al. Acoustic band structure of periodic elastic composites[J]. Physical Review Letters. 1993. 71 (13): 2022- 2025.
  • 2KUSHWAHA MS. HALEVI P. Band-gap engineering in periodic elastic composites[J]. Applied Physics Letters .1994. 64( 9) : 1085-1087.
  • 3KUSHWAHA M S. HALEVI P. Giant acoustic stop bands in two-dimensional periodic arrays of liquid cylinders[J]. Applied Physics Letters. 1996.69 (1): 31- 33.
  • 4VASSEUR J O.JAFARI-ROUHANI B.DOBRZ-YNSKI L,et al, Acoustic band gaps in fibre composite materials of boron nitride structure[J]. Journal of Physics : Condensed Matter, 1997 ,9(35) :7327.
  • 5VASSEUR J O. HLADKY-HENNION A C, DJAFARI-ROUHANI B,et al, Waveguiding in two-dimensional piezoelectric phononic crystal plates[J]. J Appl Phys,2007,101(11):114904-114904-6.
  • 6LI Xiaoling , WU Fugen , HU Hefei , et al. Large acoustic band gaps created by rotating square rods in two-dimensional periodic composites [J]. Journal of Physics D: Applied Physics, 2003,360) : 15.
  • 7WU Fugen, LIU Zhengyou, LIU Youyan. Acoustic band gaps created by rotating square rods in a two-dimensional lattice[J]. Physical Review E, 2002,66 (4) : 046628.
  • 8ZHANG Xin,DAN Huang.WU Fugenvet al. Point de- fect states in 2D acoustic band gap materials consisting of solid cylinders in viscous liquid[J].Journal of Physics Dr Applied Physics,2008,41(5) :155110.
  • 9WU Fugen,HOU Zhilin,LIU Zhengyouvet al, Acoustic band gaps in two-dimensional rectangular arrays of liquid cylinders [J]. Solid State Communications, 2002, 123(5) :239-242.
  • 10LIU Ying,SU Jiayu,XU Yalingvet al. The influence of pore shapes on the band structures in phononic crystals with periodic distributed void pores[J]. Ultrasonics,2009,49(2) :276-280.

二级参考文献22

  • 1YAN ZhiZhong WANG YueSheng.Wavelet-based method for computing elastic band gaps of one-dimensional phononic crystals[J].Science China(Physics,Mechanics & Astronomy),2007,50(5):622-630. 被引量:2
  • 2Kafesaki M,Sigalas M M,Garcfa N 2000 Phys.Rev.Lett.85 4044
  • 3Sigalas M M 1997 J.Acoust.Soc.Am.101 1256
  • 4Kafesaki M,Sigalas M M,Garcm H N 2001 Phys.B 296 190
  • 5Khelif A,Djafari-Rouhani B,Vasseur J O,Deymler P A 2003 Phys.Rev.B 68 024302
  • 6Wu F G,Liu Z Y,Liu Y Y 2004 Phys.Rev.E69066609
  • 7Wu F G,Hou Z L,Liu Z Y,Liu Y Y 2001Phys.Lett.A 292 198
  • 8Zhang X,Liu Z Y,Liu Y Y,Wu F G.2004 Sol.Stat.Commun.130 67
  • 9Li X C,Liu Z Y 2005 Sol.Stat.Commun.133 397
  • 10LiX C,Liu Z Y 2005 Phys.Lett.A 338 413

共引文献18

同被引文献14

  • 1卢天健,何德坪,陈常青,赵长颖,方岱宁,王晓林.超轻多孔金属材料的多功能特性及应用[J].力学进展,2006,36(4):517-535. 被引量:253
  • 2Kushwaha M S, Halevi P, Dobrzynski L, et al. Acoustic Band Structure of Periodic Elastic Composites[ J ]. Physical Review Letter, 1993,71(13):2022-2025.
  • 3Kushwaha M S. Stop-bands r Periodic Metallic Rods:Sculptures that can Filter the Noise[J]. Applied Physics Lette,1997,70(24):3218- 3220.
  • 4Sun H X, Zhang S Y. Enhancement of Asymmetric Acoustic Transmission[ J]. Applied Physics Letters,2013,102( 11 ) :113511-5.
  • 5Zhou X Z, Wang Y S, Zhang C Z. Effect of Material Parameters on Elastic Band Gaps of Two-dimensional Solid Phononic Crystals[J]. Journal of Applied Physics,2009,106( 1 ) :014903.
  • 6Kushwaha M S, Halevi P. Giant Acoustic Stop Bands in Two-dimensional Periodic Arrays of Liquid Cylinder[ J ]. Applied Physics Letters, 1996,69 ( 1 ) :31-33.
  • 7Kushwaha M S, Djafari-Rouhani B. Giant Sonic Stop Bands in Two-dimensional Periodic System of Fluids[J]. Journal of Applied Physics,1998, 84(9) :4677-4683.
  • 8Vasseur J O, Djafari Rouhani B, Dobrzynski L, et al. Acoustic Band Gaps in Fibre Composite Materials of Boron Nitride Structure [ J]. Journal of Physics:Condensed Matter,1997,9(35) :7327-7341.
  • 9Xu Z L, Wu F G, Mu Z F, et al. Larger Acoustic Band Gaps Obtained by Configurations of Rods in Two-dimensional Phononic Crystals[ J]. Journal of Physics D :Applied Physics ,2007,40:5584-5557.
  • 10Jovanovic D, Gajic R, Hingerl K. Refraction and Band Isotropy in 2D Square-like Archimedean Photonic Crystal Lattices [ J ]. Optics Express, 2008,16(6) :4048-4058.

引证文献1

;
使用帮助 返回顶部