期刊文献+

基于数字图像处理的路面裂缝自动分类算法 被引量:21

Automated Classification Algorithm of Pavement Crack Based on Digital Image Processing
原文传递
导出
摘要 为了充分掌握路面裂缝信息,给路面养护管理、路面性能评价与预测、路面结构和材料设计提供参考,对路面裂缝图像自动分类与严重程度识别进行研究。首先,将裂缝轮廓进行矢量化处理,从而分离出单个裂缝区域进行特征计算与分析,提取倾角、块度、空洞等新的裂缝几何特征;然后,选择裂缝分类特征(裂缝空洞、长宽比和倾角明显程度),基于统计阈值区分线性裂缝和网状裂缝;最后,分别根据倾角和宽度对线性裂缝进行分类和严重程度识别,根据块度特征识别块状裂缝、龟裂及其严重程度。结果表明:裂缝分类和严重程度识别结果准确有效,可在无人为干预的情况下准确、自动、实时地提取路面裂缝种类和严重程度信息。 In order to fully obtain pavement crack condition and provide a reference for pavement maintenance and management, pavement performance evaluation and prediction, pavement structure and material design, the research on automatic classification and intensity recognition of pavement cracks was conducted. First, crack contours were vectorized, thus a single crack area was separated from the others, whose crack features could be calculated and analyzed. Second, new crack features such as orientation angle, lumpiness and cavity were extracted. Then, pavement classification features were selected such as cavity, length-width ratio and significant degree of orientation angle, and based on the statistical thresholds, linear cracks and netted cracks were distinguished from each other. At last, linear crack categories and intensities were classified according to orientation angle and width respectively and block and alligator cracks and corresponding intensities were recognized on the basis of lumpiness characteristics. The resultsshow that pavement crack types and intensities are identified precisely and effectively, consequently, pavement crack automatic and real-time manner type and intensity information can be collected in an accurate, without human intervention.
出处 《中国公路学报》 EI CAS CSCD 北大核心 2014年第9期10-18,24,共10页 China Journal of Highway and Transport
基金 国家自然科学基金项目(51108391) 中央高校基本科研业务费专项资金项目(A0920502051208-99)
关键词 道路工程 路面裂缝 图像处理 分类算法 轮廓矢量化 块度 road engineering pavement crack image processing classification algorithm contour vectorization lumpiness
  • 相关文献

参考文献20

  • 1WANG K C P. Designs and Implementations of Auto- mated Systems for Pavement Surface Distress Survey [J]. Journal of Infrastructure Systems, 2000,6 (1) : 24-32.
  • 2WANG K C P, HOU Z,GONG W. Automated Road Sign Inventory System Based on Stereo Vision and Tracking[J]. Computer-aided Civil and Infrastructure Engineering,2010,25 (6) :468-477.
  • 3孙波成,邱延峻.路面裂缝图像处理算法研究[J].公路交通科技,2008,25(2):64-68. 被引量:33
  • 4李晋惠.用图像处理的方法检测公路路面裂缝类病害[J].长安大学学报(自然科学版),2004,24(3):24-29. 被引量:45
  • 5张娟,沙爱民,高怀钢,孙朝云.基于数字图像处理的路面裂缝自动识别与评价系统[J].长安大学学报(自然科学版),2004,24(2):18-22. 被引量:64
  • 6SOILLE P, TALBOT H. Directional Morphological Filtering[J] IEEE Transactions on Pattern Analysis and Machine Intelligence,2001,23(11) : 1313-1329.
  • 7ROSITO JUNG C, SCHARCANSKI J. Adaptive Im- age Denoising and Edge Enhancement in Scale-space Using the Wavelet Transform [J] Pattern Recogni- tion Letters,2003,24(7) :965-971.
  • 8MOGHADAS NEJAD F M,ZAKERI H. A Compari- son of Multi-Resolution Methods for Detection and Isolation of Pavement Distress[J]. Expert Systems with Applications, 2011,38 (3) : 2857-2872.
  • 9初秀民,王荣本,储江伟,王超.沥青路面破损图像分割方法研究[J].中国公路学报,2003,16(3):11-14. 被引量:37
  • 10LEE B J, LEE H. Position-invariant Neural Network for Digital Pavement Crack Analysis[J]. Computer-ai- ded Civil and Infrastructure Engineering, 2004, 19 (2) :105-118.

二级参考文献72

共引文献397

同被引文献171

引证文献21

二级引证文献148

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部