摘要
The target on the sea surface is complex and difficult to detect due to the interference of backscattered returns from the sea surface illuminated by the radar pulse. Detrended fluctuation analysis (DFA) has been used successfully to extract the time-domain Hurst exponent of sea-clutter series. Since the frequency of the sea clutter mainly concentrates around Doppler center so that we consider to extract frequency-do- main fractal characterization and then detect a weak target within sea clutter by using the difference of frequency-domain fractal characterization. The generalized detrended fluctuation analysis (GDFA) is more flexible than traditional DFA owing to its smoothing action for the clutters. In this paper, we apply the GDFA to evaluate the generalized Hurst exponent of sea-clutter series in the frequency domain. The difference of generalized Hurst exponents between different sea-clutter range bins would be used to determine whether the target exists. Moreover, some simulations with the real IPIX radar data have also been demonstrated in order to suooort this conclusion.
The target on the sea surface is complex and difficult to detect due to the interference of backscattered returns from the sea surface illuminated by the radar pulse. Detrended fluctuation analysis (DFA) has been used successfully to extract the time-domain Hurst exponent of sea-clutter series. Since the frequency of the sea clutter mainly concentrates around Doppler center so that we consider to extract frequency-do- main fractal characterization and then detect a weak target within sea clutter by using the difference of frequency-domain fractal characterization. The generalized detrended fluctuation analysis (GDFA) is more flexible than traditional DFA owing to its smoothing action for the clutters. In this paper, we apply the GDFA to evaluate the generalized Hurst exponent of sea-clutter series in the frequency domain. The difference of generalized Hurst exponents between different sea-clutter range bins would be used to determine whether the target exists. Moreover, some simulations with the real IPIX radar data have also been demonstrated in order to suooort this conclusion.
基金
The National Natural Science Foundation of China Project under contract Nos 41276187 and 41076119
the Scientific Research Foundation for Introducing Talents,Nanjing University of Information Science and Technology under contract No.20110310
Jiangsu Natural Science Foundation under contract No.BK2011008