期刊文献+

考虑材料非线性时压电发电悬臂梁的主共振响应分析 被引量:5

Primary resonance of cantilevered piezoelectric energy harvesters considering nonlinearities of piezoelectric material
下载PDF
导出
摘要 针对单晶压电悬臂梁发电系统进行了动力学建模及主共振响应分析。首先在考虑压电材料非线性的情况下,利用广义Hamilton原理、Rayleigh-Ritz法、Euler-Bernoulli梁理论等建立了单晶压电悬臂梁发电结构的机电耦合模型;其次利用多尺度法对系统进行了主共振二次近似响应分析,得到了谐振频率附近解的特性与系统参数的关系,揭示了压电材料非线性、外激励参数及负载电阻对系统响应的影响规律;最后通过数值计算验证了解析解的正确性。结论表明,压电材料的非线性特性会导致近似解的共振峰向左偏移,呈现软特性的非线性特征;当激励频率变化时,系统响应存在多解、跳跃等现象,多解区有2个稳定焦点和1个不稳定鞍点;主共振解的真正实现取决于系统的稳定性条件及初始条件的选取;系统存在最佳匹配负载电阻范围,对应系统的发电功率较大。 Dynamic modeling and primary resonance response analysis of cantilevered piezoelectric energy harvesters were presented.Firstly,the electromechanical coupling model of a cantilevered piezoelectric harvester was established considering nonlinearities of piezoelectric material using Hamilton principle,Rayleigh-Ritz method,Euler-Bernoulli beam theory and constant electrical field across the piezoelectric element.Then,the second order approximate solution to the primary resonance response of the system was investigated by using the multi-scale method.The influences of piezoelectric material nonlinearity and external excitation on the system response,and those of load resistance on the output power of the system were analyzed.By exploring the nonlinear characteristics of the response of the system near the resonant frequencies,the nature of the multi-solution and jump phenomena in the resonance region were revealed.It was shown that the realization of primary resonance depends on the stability conditions and initial conditions of the system;in addition,the generation power of the system reaches the maximum by properly selecting resistance.Finally,numerical integral results verified the correctness of the analysis.
出处 《振动与冲击》 EI CSCD 北大核心 2014年第19期8-16,共9页 Journal of Vibration and Shock
基金 国家自然科学基金资助项目(11172199) 天津市自然科学基金重点项目(11JCZDJC25400)
关键词 压电发电悬臂梁 材料非线性 多尺度法 主共振 piezoelectric cantilevered energy harvesters material nonlinearity multi-scale method primary resonance
  • 相关文献

参考文献21

  • 1Williams C B, Yates R B. Analysis of a micro-electric generator for mierosysterns [ J ]. Sensors and Actuators A, 1996, 52: 8-11.
  • 2Glynne-Jones P, Tudor M J, Beeby S P, et al. An electromagnetic, vibration-powered generator for intelligent sensor systems[J]. Sensors and Actuators A, 2004, 110: 344 - 349.
  • 3Mitcheson P, Miao P, Start B, et al. MEMS electrostatic micro-power generator for low frequency operation [ J ]. Sensors and Actuators A, 2004, 115:523 -529.
  • 4Cook-Chennauh K A, Thambi N, Sastry A M. Powering MEMS portable devices-a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems [ J ]. Smart Materials and Structures, 2008, 17(4) :1 -33.
  • 5刘祥建,陈仁文.压电振动能量收集装置研究现状及发展趋势[J].振动与冲击,2012,31(16):169-176. 被引量:82
  • 6邱清泉,肖立业,辛守乔,黄天斌.振动式微型发电机的研究进展[J].振动与冲击,2010,29(9):191-195. 被引量:12
  • 7Roundy S, Wright P K. A piezoelectric vibration based generator for wireless electronics [ J ]. Smart Materials and Structures, 2004, 13 : 1131 - 1142.
  • 8Johnson T J, Charnegie D, Clark W W, et al. Energy harvesting from mechanical vibrations using piezoelectric cantilever beams [ J ]. International Society for Optical Engineering, 2006, 6169 : 61690D.
  • 9Sodano H A, Park G, Inman D J. Estimation of electric charge output for piezoelectric energy harvesting [ J ]. Strain, 2004, 40 : 49 - 58.
  • 10duToit N E. Modeling and design of a MEMS piezoelectric vibration energy harvester [ D ]. Cambridge : Massachusetts Institute of Technology, 2005.

二级参考文献124

共引文献232

同被引文献46

  • 1盛平,王寿荣,吉训生,许宜申.硅微机械谐振陀螺仪的非线性分析[J].中国惯性技术学报,2006,14(6):60-62. 被引量:4
  • 2沈大雷.南航助“嫦娥”完美登月[N].中国教育报,2013-12-18(8).
  • 3Liu Xiujuan, Zhou Kechao, Zhang Xiaoyong, et al.Development, Modeling and Application of Piezoe-lectric Fiber Composites[J]. Transactions of Non-ferrous Metals Society of China(English Edition) ?2013,23(1):98-107.
  • 4Dragan A,Bryan B, Shashank P. Millipede-inspiredLocomotion through Novel U-Shaped PiezoelectricMotors[J]. Smart Materials and Structures, 2014?23(3),037001.
  • 5Toyama S. Spherical Ultrasonic Motor for Pipe In-spection Robot[J]. Applied Mechanics and Materi-als, 2012,186 : 3-11.
  • 6Tomoaki M. Micro Ultrasonic Motor Using a OneCubic Millimeter Stator [J]. Sensors and ActuatorsA:Physical,2014,213 :102-107.
  • 7Chen Weishan,Liu Yingxiang,Yang Xiaohui, et al.Ring-type Traveling Wave Ultrasonic Motor Usinga Radial Bending Mode[J]. IEEE Trans. Ultrason.Ferroelectr. Freq. Control ?2014 ,61(1) : 197-202.
  • 8Oliver B. Harmonic Piezodrive - miniaturized ServoMotor[J]. Mechatronics,2000,10(4) :545-554.
  • 9Li Chong,Xing Jichun,Xu Lizhong. Coupled Vibra-tion of Driving Sections for an ElectromechanicalIntegrated Harmonic Piezodrive System [J]. AIPAdvances,2014,4(3) :031320.
  • 10Vahid H, Tegoeh T. Dynamic Modeling of 3-DOFPyramidal - shapedpiezo - driven Mechanism [J].Mechanism and Machine Theory,2013,70; 225 ~245.

引证文献5

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部