期刊文献+

基于LDA模型的网络突发事件话题演化路径研究 被引量:11

Topic Evolution Analysis of Internet Emergency Based on LDA Model
原文传递
导出
摘要 基于LDA思想,用先离散时间型话题模型思路建立网络突发事件话题的空间模型,并根据特征词之间的关联度使用社会网络分析方法进行话题演化路径的分析。实验表明,此思路能够较全面体现话题演化路径,为网络突发事件分析提供有效途径。 Based on LDA model, we use the time pre-discretized method to analyze the topic space, then according to the relation degree of feature words we analyze the migration of topic content by social net- work analysis method. The proposed method was experimentally verified to be efficient for detecting topic evolution of internet emergency.
作者 林萍 黄卫东
出处 《情报科学》 CSSCI 北大核心 2014年第10期20-23,共4页 Information Science
基金 国家自然科学基金(71171117) 江苏省教育厅哲社项目(2012SJB630051)
关键词 LDA 网络突发事件 网络舆情 先离散型 关联度 话题演化 LDA model internet emergency network public opinion time pre-discretized method relation degree topic evolution
  • 相关文献

参考文献9

二级参考文献48

  • 1于满泉,骆卫华,许洪波,白硕.话题识别与跟踪中的层次化话题识别技术研究[J].计算机研究与发展,2006,43(3):489-495. 被引量:49
  • 2徐晓日.网络舆情事件的应急处理研究[J].华北电力大学学报(社会科学版),2007(1):89-93. 被引量:141
  • 3石晶,戴国忠.基于PLSA模型的文本分割[J].计算机研究与发展,2007,44(2):242-248. 被引量:25
  • 4Blei D M, Ng A Y, Jordan M I. I.atent dirichlet allocation[J]. Journal of Machine Learning Research, 2003 (3) :933-1022.
  • 5Wang X, McCallum A. Topic over time: A non-markov continuous-time model of topical trends[C]//ACM SIGKDIN2006. Philadelphia, USA : [s. n. ], 2006 : 424- 433.
  • 6Hall D, Jurafsky D, Manning C D. Studying the history of ideas using topic models[C]//Proceedings of the 2008 Conference on Empirical Methods in Natural Language Processing. Waikiki, Honolulu, Huawaii: [s. n. ], 2008:363-371.
  • 7Blei D M, Lafferty J D. Dynamic topic models[C]// Proceedings of the 23rd International Conference on Machine Learning. Pittsburgh, Pernsylvania: [s. n. ], 2006:113 -120.
  • 8Alsumait L, Barbara D, Domeniconi C. On-line LDA: Adaptive topic models for mining text streams with applications to topic detection and tracking [C]//ln ICDM. Pisa, Italy:[s.n.], 2008:3-12.
  • 9Griffiths T L, Steyvers M. Finding scientific topics [J].Proe Natl Acad Sci USA, 2004, 101(Suppl 1): 5228-5235.
  • 10楚克明,李芳.基于LDA的新闻话题的演化[C]//第5届全国信息检索学术会议.上海:[s.n.],2009.

共引文献82

同被引文献149

  • 1刘忠,茆诗松.分组数据的Bayes分析—Gibbs抽样方法[J].应用概率统计,1997,13(2):211-216. 被引量:16
  • 2张秋霞,谷平.文档主题提取算法VSM改进与应用[J].情报杂志,2007,26(12):17-19. 被引量:3
  • 3Blei David M.,Ng Andrew Y.,Jordan Michael I.,Lafferty John.Latent Dirichlet Allocation[J].Journal of Machine Learning Research,2003,3(4):993-1022.
  • 4Huang,B.,Yang,Y.,Mahmood,A.,& Wang,H..Microblog topic detection based on LDA model and single-pass clustering[J].In Rough Sets and Current Trends in Computing.Springer Berlin Heidelberg,2012:166-171.
  • 5Chen,Y.,Amiri,H.,Li,Z.,& Chua,T.S..Emerging topic detection for organizations from microblogs[C].In Proceedings of the 36th international ACM SIGIR conference on Research and development in information retrieval,ACM,2013:43-52.
  • 6Efron,M..Information search and retrieval in microblogs[J].Journal of the American Society for Information Science and Technology,2011,62(6):996-1008.
  • 7Vosecky,J.,Jiang,D.,Leung,K.W.T.,& Ng,W..Dynamic multi-faceted topic discovery in twitter[C].In Proceedings of the 22nd ACM international conference on Conference on information & knowledge management,ACM,2013:879-884.
  • 8Damak,F.,Pinel-Sauvagnat,K.,Boughanem,M.,& Cabanac,G..Effectiveness of State-of-the-art Features for Microblog Search[C].In Proceedings of the 28th Annual ACM Symposium on Applied Computing,ACM,2013:914-919.
  • 9Miyanishi,T.,Seki,K.,& Uehara,K..Combining recency and topic-dependent temporal variation for microblog search[J].Advances in Information Retrieval,Lecture Notes in Computer Science,2013,7814:331-343.
  • 10马费成,夏永红.网络信息的生命周期实证研究[J].情报理论与实践,2009,32(6):1-7. 被引量:59

引证文献11

二级引证文献100

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部