期刊文献+

自适应邻域选择的I somap算法 被引量:1

Dimensionality reduction method based on adaptive neighborhood selection
下载PDF
导出
摘要 针对流形学习算法Isomap对于稀疏数据局部邻域大小选择的敏感性,提出一种自适应邻域选择的降维方法 A-Isomap(Adaptive-Isomap).在数据稀疏的情况下,通过邻域选取算法自适应的动态选择每一个样本点的邻域大小,很大程度上避免了对短路点的选择;同时,使用聚类信息来汇聚相似的样本点,保证了降维后的数据具有很好的可分性.为了验证算法的有效性,将该算法应用于手工流形的降维,结果表明该算法能较好的展现降维效果. The Isomap method based on manifold learning are sensitive to the selection of local neigh-bors.This paper proposed a dimensionality reduction based on adaptive neighborhood selection.In the case of sparse data sets,it select the neighborhood of each sample point by adaptive neighbor-hood selection algorithm,and avoid the the short-circuit point selection largely.While,it clustered the similar sample points by using clustering information,which guaranteed good separability for the reduction data.Located in hand manifolds for the high-dimensional data on the experiment to test the improved algorithm has a good effort of reducing dimension.
出处 《河北建筑工程学院学报》 CAS 2014年第2期110-112,116,共4页 Journal of Hebei Institute of Architecture and Civil Engineering
关键词 线性化 流形学习 稀疏 降维 Isomap linearization manifold learning isometric feature mapping sparse dimensionality reduction
  • 相关文献

参考文献5

  • 1Jolliffe I. Principal component analysis[M]. John Wiley & Sons,Ltd,2005.
  • 2Cox T, Cox M. Multidimensional Scaling. 1994[M]. Chapman& Hall, London, UK.
  • 3J. B,TENENBAUM,V. DE SILVA,J. C. LAGFORD. A global geometric framework for nonlinear dimensionality re- duction[J]. Science, 2000,290(5500) : 2319 - 2323.
  • 4S. T. ROWELS, L. K. SAUL. Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000,290 (5500) :2323-2326.
  • 5武森,全喜伟,陈学昌.稀疏数据非线性降维的CN-Isomap算法[J].数学的实践与认识,2010,40(17):182-188. 被引量:2

二级参考文献18

  • 1赵连伟,罗四维,赵艳敞,刘蕴辉.高维数据流形的低维嵌入及嵌入维数研究[J].软件学报,2005,16(8):1423-1430. 被引量:54
  • 2何力,张军平,周志华.基于放大因子和延伸方向研究流形学习算法[J].计算机学报,2005,28(12):2000-2009. 被引量:24
  • 3郑守志,叶世伟.局部线性嵌入算法改进研究[J].计算机仿真,2007,24(4):78-81. 被引量:5
  • 4Han J W, Kamber M. Data Mining: Concepts and Techniques[M]. Beijing, China: China Machine Press, 2006.
  • 5Jolliffe I T. Principal component analysis[M]. New York, USA: Springer-Verlag, 1986.
  • 6Borg I, Groenen P. Modern multidimensional scaling: theory and application[M]. New York, USA: Springer-Verlag, 1997.
  • 7Tenenbaum J B, Silva V, Langford J C. A global geometric framework for nonlinear dimensionality reduction[J]. Science, 2000, 290(5500): 2319-2323.
  • 8Roweis S T, Saul L K. Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000, 290(5500): 2323-2326.
  • 9Zhang Z Y, Zha H Y. Principal manifolds and nonlinear dimension reduction via local tangent space alignment[J]. SIAM Journal of Scientific Computing, 2002, 26(1): 313-338.
  • 10Belkin M, Niyogi P. Laplacian eigenmaps for dimensionality reduction and data representation[J]. Neural Computations, 2003, 15(6): 1373-1396.

共引文献1

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部